
Package: admix (via r-universe)
August 23, 2024

Title Package Admix for Admixture (aka Contamination) Models

Version 2.1-3

Date 2024-04-05

Description Implements techniques to estimate the unknown quantities
related to two-component admixture models, where the two
components can belong to any distribution (note that in the
case of multinomial mixtures, the two components must belong to
the same family). Estimation methods depend on the assumptions
made on the unknown component density (see Bordes and
Vandekerkhove (2010) <doi:10.3103/S1066530710010023>; Patra and
Sen (2016) <doi:10.1111/rssb.12148>); Milhaud, Pommeret, Salhi
and Vandekerkhove (2022) <doi:10.1016/j.jspi.2021.05.010>). In
practice, one can estimate both the mixture weight and the
unknown component density in a wide variety of frameworks. On
top of that, hypothesis tests can be performed in one and
two-sample contexts to test the unknown component density (see
Milhaud, Pommeret, Salhi, Vandekerkhove (2023)). Finally,
clustering of unknown mixture components is also feasible in a
K-samples setting.

License GPL (>= 3)

URL https://github.com/XavierMilhaud/admix

BugReports https://github.com/XavierMilhaud/admix/issues

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports base, cubature, fdrtool, graphics, Iso, MASS, methods,
orthopolynom, pracma, Rcpp, stats, utils

Suggests rmutil, doParallel, foreach, evd, logitnorm, flexsurv, plyr,
reshape2, gridExtra, lattice, testthat (>= 3.0.0), knitr,
rmarkdown, markdown, spelling

Depends R (>= 2.10)

1

https://doi.org/10.3103/S1066530710010023
https://doi.org/10.1111/rssb.12148
https://doi.org/10.1016/j.jspi.2021.05.010
https://github.com/XavierMilhaud/admix
https://github.com/XavierMilhaud/admix/issues

2 Contents

LinkingTo Rcpp

Config/testthat/edition 3

VignetteBuilder knitr

Language en-US

Repository https://xaviermilhaud.r-universe.dev

RemoteUrl https://github.com/xaviermilhaud/admix

RemoteRef HEAD

RemoteSha dce5cef295c3b22c6a339200265fe6b78f0f5744

Contents
admix_clustering . 3
admix_estim . 5
admix_test . 7
allGalaxies . 10
BVdk_contrast . 10
BVdk_contrast_gradient . 12
BVdk_estimParam . 13
BVdk_ML_varCov_estimators . 14
BVdk_varCov_estimators . 16
decontaminated_cdf . 17
decontaminated_density . 19
detect_support_type . 21
estimVarCov_empProcess . 22
gaussianity_test . 24
IBM_2samples_test . 25
IBM_empirical_contrast . 28
IBM_estimProp . 30
IBM_estimVarCov_gaussVect . 32
IBM_gap . 34
IBM_greenLight_criterion . 35
IBM_hessian_contrast . 37
IBM_k_samples_test . 39
IBM_tabul_stochasticInteg . 42
IBM_theoretical_contrast . 44
IBM_theoretical_gap . 45
is_equal_knownComp . 47
kernel_cdf . 48
kernel_density . 49
knownComp_to_uniform . 49
milkyWay . 50
mortality_sample . 51
orthoBasis_coef . 52
orthoBasis_test_H0 . 53
PatraSen_cv_mixmodel . 55

admix_clustering 3

PatraSen_density_est . 57
PatraSen_dist_calc . 58
PatraSen_est_mix_model . 59
plot.decontaminated_density . 60
plot_mixt_density . 63
poly_orthonormal_basis . 64
print.admix_cluster . 65
print.admix_estim . 66
print.admix_test . 67
rsimmix . 68
rsimmix_mix . 69
sim_gaussianProcess . 70
stmf_small . 71
two_samples_test . 72

Index 76

admix_clustering Clustering of K populations following admixture models

Description

Create clusters on the unknown components related to the K populations following admixture mod-
els. Based on the K-sample test using Inversion - Best Matching (IBM) approach, see ’Details’
below for further information.

Usage

admix_clustering(
samples = NULL,
n_sim_tab = 100,
comp.dist = NULL,
comp.param = NULL,
tabul.dist = NULL,
tune.penalty = FALSE,
conf.level = 0.95,
parallel = FALSE,
n_cpu = 2,
echo = TRUE

)

Arguments

samples A list of the K observed samples to be clustered, all following admixture distri-
butions.

n_sim_tab Number of simulated gaussian processes used in the tabulation of the inner con-
vergence distribution in the IBM approach.

4 admix_clustering

comp.dist A list with 2*K elements corresponding to the component distributions (spec-
ified with R native names for these distributions) involved in the K admixture
models. Elements, grouped by 2, refer to the unknown and known components
of each admixture model, If there are unknown elements, they must be specified
as ’NULL’ objects. For instance, ’comp.dist’ could be specified as follows with
K = 3: list(f1 = NULL, g1 = ’norm’, f2 = NULL, g2 = ’norm’, f3 = NULL, g3
= ’rnorm’).

comp.param A list with 2*K elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. Elements, grouped
by 2, refer to the parameters of unknown and known components of each admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.param’ could be specified as follows (with K = 3):
list(f1 = NULL, g1 = list(mean=0,sd=1), f2 = NULL, g2 = list(mean=3,sd=1.1),
f3 = NULL, g3 = list(mean=-2,sd=0.6)).

tabul.dist Only useful for comparisons of detected clusters at different confidence levels.
Is a list of the tabulated distributions of the stochastic integral for each cluster
previously detected.

tune.penalty A boolean that allows to choose between a classical penalty term or an opti-
mized penalty embedding some tuning parameters (automatically optimized)
for k-sample tests used within the clustering procedure. Optimized penalty is
particularly useful for low sample size.

conf.level The confidence level of the K-sample test used in the clustering procedure.

parallel (default to FALSE) Boolean to indicate whether parallel computations are per-
formed (speed-up the tabulation).

n_cpu (default to 2) Number of cores used when parallelizing.

echo (default to TRUE) Display the remaining computation time.

Details

See the paper at the following HAL weblink: https://hal.science/hal-04129130

Value

A list with eleven elements: 1) the number of populations studied; 2) the number of detected clus-
ters; 3) the list of p-values for each test performed; 4) the cluster affiliation for each population; 5)
the chosen confidence level of statistical tests; 6) the cluster components; 7) the size of clusters;
8) the estimated weights of the unknown component distributions inside each cluster (remind that
estimated weights are consistent only if unknown components are tested to be identical); 9) the ma-
trix of pairwise discrepancies across populations; 10) the tabulated distributions used for statistical
tests; 11) the initial call.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

admix_estim 5

Examples

Simulate data (chosen parameters indicate 2 clusters (populations (1,3), and (2,4)):
list.comp <- list(f1 = "gamma", g1 = "exp",

f2 = "gamma", g2 = "exp",
f3 = "gamma", g3 = "gamma",
f4 = "gamma", g4 = "exp")

list.param <- list(f1 = list(shape = 16, rate = 4), g1 = list(rate = 1/3.5),
f2 = list(shape = 14, rate = 2), g2 = list(rate = 1/5),
f3 = list(shape = 16, rate = 4), g3 = list(shape = 12, rate = 2),
f4 = list(shape = 14, rate = 2), g4 = list(rate = 1/7))

A.sim <- rsimmix(n=2600, unknownComp_weight=0.8, comp.dist = list(list.comp$f1,list.comp$g1),
comp.param = list(list.param$f1, list.param$g1))$mixt.data

B.sim <- rsimmix(n=3000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),
comp.param = list(list.param$f2, list.param$g2))$mixt.data

C.sim <- rsimmix(n=3500, unknownComp_weight=0.6, comp.dist = list(list.comp$f3,list.comp$g3),
comp.param = list(list.param$f3, list.param$g3))$mixt.data

D.sim <- rsimmix(n=4800, unknownComp_weight=0.5, comp.dist = list(list.comp$f4,list.comp$g4),
comp.param = list(list.param$f4, list.param$g4))$mixt.data

Look for the clusters:
list.comp <- list(f1 = NULL, g1 = "exp",

f2 = NULL, g2 = "exp",
f3 = NULL, g3 = "gamma",
f4 = NULL, g4 = "exp")

list.param <- list(f1 = NULL, g1 = list(rate = 1/3.5),
f2 = NULL, g2 = list(rate = 1/5),
f3 = NULL, g3 = list(shape = 12, rate = 2),
f4 = NULL, g4 = list(rate = 1/7))

clusters <- admix_clustering(samples = list(A.sim,B.sim,C.sim,D.sim), n_sim_tab = 30,
comp.dist = list.comp, comp.param = list.param,
tabul.dist = NULL, tune.penalty = TRUE, conf.level = 0.95,
parallel = TRUE, n_cpu = 2, echo = FALSE)

clusters

admix_estim Estimate the unknown parameters of the admixture model(s) under
study

Description

Estimate the component weights, the location shift parameter (in case of a symmetric unknown
component density), and the unknown component distribution using different estimation techniques.
We remind that the i-th admixture model has probability density function (pdf) l_i such that: l_i =
p_i * f_i + (1-p_i) * g_i, where g_i is the known component density. The unknown quantities p_i
and f_i then have to be estimated.

6 admix_estim

Usage

admix_estim(
samples = NULL,
sym.f = FALSE,
est.method = c("PS", "BVdk", "IBM"),
comp.dist = NULL,
comp.param = NULL

)

Arguments

samples A list of the K samples to be studied, all following admixture distributions.

sym.f A boolean indicating whether the unknown component densities are assumed to
be symmetric or not.

est.method The estimation method to be applied. Can be one of ’BVdk’ (Bordes and Van-
dekerkhove estimator), ’PS’ (Patra and Sen estimator), or ’IBM’ (Inversion
Best-Matching approach). The same estimation method is performed on each
sample. Important note: estimation by ’IBM’ is unbiased only under H0, mean-
ing that choosing this method requires to perform previously the test hypothesis
between the pairs of samples. For further details, see section ’Details’ below.

comp.dist A list with 2*K elements corresponding to the component distributions (spec-
ified with R native names for these distributions) involved in the K admixture
models. Elements, grouped by 2, refer to the unknown and known components
of each admixture model, If there are unknown elements, they must be specified
as ’NULL’ objects. For instance, ’comp.dist’ could be specified as follows with
K = 3: list(f1 = NULL, g1 = ’norm’, f2 = NULL, g2 = ’norm’, f3 = NULL, g3
= ’norm’).

comp.param A list with 2*K elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. Elements, grouped
by 2, refer to the parameters of unknown and known components of each admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.param’ could be specified as follows (with K = 3):
list(f1 = NULL, g1 = list(mean=0,sd=1), f2 = NULL, g2 = list(mean=3,sd=1.1),
f3 = NULL, g3 = list(mean=-2,sd=0.6)).

Details

For further details on the different estimation techniques, see i) IBM approach at https://hal.science/hal-
03201760 ; ii) Patra and Sen estimator: Patra, R.K. and Sen, B. (2016); Estimation of a Two-
component Mixture Model with Applications to Multiple Testing; JRSS Series B, 78, pp. 869–893.
; iii) BVdk estimator: Bordes, L. and Vandekerkhove, P. (2010); Semiparametric two-component
mixture model when a component is known: an asymptotically normal estimator; Math. Meth.
Stat.; 19, pp. 22–41.

admix_test 7

Value

A list containing the estimated weight of every unknown component distribution among admixture
samples.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

On a simulated example to see whether the true parameters are well estimated.
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7),

f2 = list(mean = 0, sd = 1), g2 = list(mean = -3, sd = 1.1))
Simulate data:
sim1 <- rsimmix(n = 2100, unknownComp_weight = 0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
sim2 <- rsimmix(n= 2000, unknownComp_weight = 0.85, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
Estimate the mixture weights of the admixture models:
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),

f2 = NULL, g2 = list(mean = -3, sd = 1.1))
estim <- admix_estim(samples = list(sim1,sim2), sym.f = TRUE, est.method = 'IBM',

comp.dist = list.comp, comp.param = list.param)

admix_test Hypothesis test between unknown components of the admixture models
under study

Description

Perform hypothesis test between unknown components of a list of admixture models, where we
remind that the i-th admixture model has probability density function (pdf) l_i such that: l_i = p_i *
f_i + (1-p_i) * g_i, with g_i the known component density. The unknown quantities p_i and f_i are
thus estimated, leading to the test given by the following null and alternative hypothesis: H0: f_i =
f_j for all i != j against H1 : there exists at least i != j such that f_i differs from f_j. The test can be
performed using two methods, either the comparison of coefficients obtained through polynomial
basis expansions of the component densities, or by the inner-convergence property obtained using
the IBM approach. See ’Details’ below for further information.

mailto:xavier.milhaud.research@gmail.com

8 admix_test

Usage

admix_test(
samples = NULL,
sym.f = FALSE,
test.method = c("Poly", "ICV"),
sim_U = NULL,
n_sim_tab = 50,
comp.dist = NULL,
comp.param = NULL,
support = c("Real", "Integer", "Positive", "Bounded.continuous"),
ICV_tunePenalty = TRUE,
conf.level = 0.95,
parallel = FALSE,
n_cpu = 2

)

Arguments

samples A list of the K samples to be studied, all following admixture distributions.

sym.f A boolean indicating whether the unknown component densities are assumed to
be symmetric or not.

test.method The testing method to be applied. Can be either ’Poly’ (polynomial basis ex-
pansion) or ’ICV’ (inner convergence from IBM). The same testing method is
performed between all samples. In the one-sample case, only ’Poly’ is available
and the test is a gaussianity test. For further details, see section ’Details’ below.

sim_U (Used only with ’ICV’ testing method, otherwise useless) Random draws of
the inner convergence part of the contrast as defined in the IBM approach (see
’Details’ below).

n_sim_tab (Used only with ’ICV’ testing method, otherwise useless) Number of simulated
gaussian processes used in the tabulation of the inner convergence distribution
in the IBM approach.

comp.dist A list with 2*K elements corresponding to the component distributions (spec-
ified with R native names for these distributions) involved in the K admixture
models. Elements, grouped by 2, refer to the unknown and known components
of each admixture model, If there are unknown elements, they must be specified
as ’NULL’ objects. For instance, ’comp.dist’ could be specified as follows with
K = 3: list(f1 = NULL, g1 = ’norm’, f2 = NULL, g2 = ’norm’, f3 = NULL, g3
= ’rnorm’).

comp.param A list with 2*K elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. Elements, grouped
by 2, refer to the parameters of unknown and known components of each admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.param’ could be specified as follows (with K = 3):
list(f1 = NULL, g1 = list(mean=0,sd=1), f2 = NULL, g2 = list(mean=3,sd=1.1),
f3 = NULL, g3 = list(mean=-2,sd=0.6)).

admix_test 9

support (Potentially used with ’Poly’ testing method, otherwise useless) The support of
the observations; one of "Real", "Integer", "Positive", or "Bounded.continuous".

ICV_tunePenalty

(default to TRUE) Boolean used to tune the penalty term in the k-sample test
(k=2,3,...,K) when using Inversion Best Matching (IBM) approach coupled to
Inner ConVergence (ICV) property. Particularly useful when studying unbal-
anced samples (in terms of sample size) or small-sized samples.

conf.level The confidence level of the K-sample test.

parallel (default to FALSE) Boolean indicating whether parallel computations are per-
formed (speed-up the tabulation).

n_cpu (default to 2) Number of cores used when parallelizing.

Details

For further details on hypothesis techniques, see i) Inner convergence through IBM approach at
https://hal.science/hal-03201760 ; ii) Polynomial expansions at ’False Discovery Rate model Gaus-
sianity test’ (EJS, Pommeret & Vanderkerkhove, 2017), or ’Semiparametric two-sample admixture
components comparison test: the symmetric case’ (JSPI, Milhaud & al., 2021).

Value

A list containing the decision of the test (reject or not), the confidence level at which the test is
performed, the p-value of the test, and the value of the test statistic (following a chi2 distribution
with one degree of freedom under the null).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

On a simulated example, with 1 sample (gaussianity test):
list.comp <- list(f1 = "norm", g1 = "norm")
list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7))
Simulate data:
sim1 <- rsimmix(n = 300, unknownComp_weight = 0.85, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Perform the test hypothesis:
list.comp <- list(f1 = NULL, g1 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7))
gaussTest <- admix_test(samples = list(sim1), sym.f = TRUE, test.method = 'Poly', sim_U = NULL,

n_sim_tab = 50, comp.dist = list.comp, comp.param = list.param,
support = "Real", conf.level = 0.95, parallel = FALSE, n_cpu = 2)

mailto:xavier.milhaud.research@gmail.com

10 BVdk_contrast

allGalaxies Four galaxies (Carina, Sextans, Sculptor, Fornax) measurements of
heliocentric velocities from SIMBAD astronomical database

Description

Four galaxies (Carina, Sextans, Sculptor, Fornax) measurements of heliocentric velocities from
SIMBAD astronomical database

Usage

allGalaxies

Format

An evolving data frame of velocities for 4 dSph galaxies; namely Carina, Sextans, Sculptor and
Fornax. Currently contains 8,862 rows and 3 columns, with information on:

Target Target identification; Galaxy-ID number

HV Weighted mean Heliocentric rest frame velocity

Name The name of the galaxy

Source

https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=
50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%
2a-c.eq&-sort=_r&-oc.form=sexa

BVdk_contrast Contrast as defined in Bordes & Vandekerkhove (2010)

Description

Compute the contrast as defined in Bordes & Vandekerkhove (2010) (see below in section ’Details’),
needed for optimization purpose. Remind that one considers an admixture model with symmetric
unknown density, i.e. l(x) = p*f(x-mu) + (1-p)*g(x), where l denotes the probability density function
(pdf) of the mixture with known component pdf g, p is the unknown mixture weight, f relates to the
unknown symmetric component pdf f, and mu is the location shift parameter.

Usage

BVdk_contrast(param, data, h, comp.dist, comp.param)

https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa
https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa
https://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/AJ/137/3100/stars&-out.max=50&-out.form=HTML%20Table&-out.add=_r&-out.add=_RAJ,_DEJ&-out.add=_RA%2a-c.eq,_DE%2a-c.eq&-sort=_r&-oc.form=sexa

BVdk_contrast 11

Arguments

param Numeric vector of two elements, corresponding to the two parameters (first the
unknown component weight, and then the location shift parameter of the sym-
metric unknown component distribution).

data Numeric vector of observations following the admixture model given by the pdf
l.

h Width of the window used in the kernel estimations.

comp.dist A list with two elements corresponding to component distributions (specified
with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

Details

The contrast is defined in Bordes, L. and Vandekerkhove, P. (2010); Semiparametric two-component
mixture model when a component is known: an asymptotically normal estimator; Math. Meth.
Stat.; 19, pp. 22–41.

Value

The value of the contrast.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
comp.dist <- list(f = 'norm', g = 'norm')
comp.param <- list(f = list(mean = 3, sd = 0.5), g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 1000, unknownComp_weight = 0.6, comp.dist, comp.param)[['mixt.data']]
Compute the contrast value for some given parameter vector in real-life framework:
comp.dist <- list(f = NULL, g = 'norm')
comp.param <- list(f = NULL, g = list(mean = 0, sd = 1))
BVdk_contrast(c(0.3,2), data1, density(data1)$bw, comp.dist, comp.param)

mailto:xavier.milhaud.research@gmail.com

12 BVdk_contrast_gradient

BVdk_contrast_gradient

Gradient of the contrast as defined in Bordes & Vandekerkhove (2010)

Description

Compute the gradient of the contrast as defined in Bordes & Vandekerkhove (2010) (see below in
section ’Details’), needed for optimization purpose. Remind that one considers an admixture model,
i.e. l = p*f + (1-p)*g ; where l denotes the probability density function (pdf) of the mixture with
known component pdf g, p is the unknown mixture weight, and f relates to the unknown symmetric
component pdf f.

Usage

BVdk_contrast_gradient(param, data, h, comp.dist, comp.param)

Arguments

param A numeric vector with two elements corresponding to the parameters to be es-
timated. First the unknown component weight, and second the location shift
parameter of the symmetric unknown component distribution.

data A vector of observations following the admixture model given by the pdf l.

h The window width used in the kernel estimations.

comp.dist A list with two elements corresponding to component distributions (specified
with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

Details

The contrast is defined in Bordes, L. and Vandekerkhove, P. (2010); Semiparametric two-component
mixture model when a component is known: an asymptotically normal estimator; Math. Meth.
Stat.; 19, pp. 22–41.

Value

A numeric vector composed of the two partial derivatives w.r.t. the two parameters on which to
optimize the contrast.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

BVdk_estimParam 13

Examples

Simulate data:
comp.dist <- list(f = 'norm', g = 'norm')
comp.param <- list(f = list(mean = 3, sd = 0.5), g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 1000, unknownComp_weight = 0.6, comp.dist, comp.param)[['mixt.data']]
Compute the contrast gradient for some given parameter vector in real-life framework:
comp.dist <- list(f = NULL, g = 'norm')
comp.param <- list(f = NULL, g = list(mean = 0, sd = 1))
BVdk_contrast_gradient(c(0.3,2), data1, density(data1)$bw, comp.dist, comp.param)

BVdk_estimParam Estimation of the parameters in a two-component admixture model
with symmetric unknown density

Description

Estimation of the two parameters (mixture weight as well as location shift) in the admixture model
with pdf: l(x) = p*f(x-mu) + (1-p)*g(x), x in R, where g is the known component, p is the proportion
and f is the unknown component with symmetric density. The localization shift parameter is thus
denoted mu, and the component weight p. See ’Details’ below for further information.

Usage

BVdk_estimParam(
data,
method = c("L-BFGS-B", "Nelder-Mead"),
comp.dist,
comp.param

)

Arguments

data The observed sample under study.

method The method used throughout the optimization process, either ’L-BFGS-B’ or
’Nelder-Mead’ (see ?optim).

comp.dist A list with two elements corresponding to component distributions (specified
with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

14 BVdk_ML_varCov_estimators

Details

Parameters are estimated by minimization of the contrast function, where the contrast is defined in
Bordes, L. and Vandekerkhove, P. (2010); Semiparametric two-component mixture model when a
component is known: an asymptotically normal estimator; Math. Meth. Stat.; 19, pp. 22–41.

Value

A numeric vector with the two estimated parameters (proportion first, and then location shift).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f = 'norm', g = 'norm')
list.param <- list(f = list(mean = -2, sd = 0.5),

g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 200, unknownComp_weight = 0.4, list.comp, list.param)[['mixt.data']]
Perform the estimation of parameters in real-life:
list.comp <- list(f = NULL, g = 'norm')
list.param <- list(f = NULL, g = list(mean = 0, sd = 1))
BVdk_estimParam(data1, method = 'L-BFGS-B', list.comp, list.param)

BVdk_ML_varCov_estimators

Maximum Likelihood estimation of the variance of the unknown den-
sity variance estimator in an admixture model

Description

Parametric estimation of the variance of the variance parameter in Bordes & Vandekerkhove (2010)
setting, i.e. considering the admixture model with probability density function (pdf) l: l(x) = p*f(x-
mu) + (1-p)*g, where g is the known component of the two-component mixture, p is the mixture
proportion, f is the unknown component with symmetric density, and mu is the location shift pa-
rameter. The estimation of the variance of the variance related to the density f is made by maximum
likelihood optimization through the information matrix, with the assumption that the unknown f is
gaussian.

Usage

BVdk_ML_varCov_estimators(data, hat_w, hat_loc, hat_var, comp.dist, comp.param)

mailto:xavier.milhaud.research@gmail.com

BVdk_ML_varCov_estimators 15

Arguments

data The observed sample under study.

hat_w Estimate of the unknown component weight.

hat_loc Estimate of the location shift parameter.

hat_var Estimate of the variance of the symmetric density f, obtained by plugging-in the
previous estimates. See ’Details’ below for further information.

comp.dist A list with two elements corresponding to component distributions (specified
with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

Details

Plug-in strategy is defined in Pommeret, D. and Vandekerkhove, P. (2019); Semiparametric density
testing in the contamination model; Electronic Journal of Statistics, 13, pp. 4743–4793. The vari-
ance of the estimator variance of the unknown density f is needed in a testing perspective, since
included in the variance of the test statistic. Other details about the information matrix can be found
in Bordes, L. and Vandekerkhove, P. (2010); Semiparametric two-component mixture model when
a component is known: an asymptotically normal estimator; Math. Meth. Stat.; 19, pp. 22–41.

Value

The variance of the estimator of the variance of the unknown component density f.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f = "norm", g = "norm")
list.param <- list(f = c(mean = 4, sd = 1), g = c(mean = 7, sd = 0.5))
sim.data <- rsimmix(n = 400, unknownComp_weight = 0.9, list.comp, list.param)$mixt.data
Estimate mixture weight and location shift parameters in real-life:
list.comp <- list(f = NULL, g = "norm")
list.param <- list(f = NULL, g = c(mean = 7, sd = 0.5))
estim <- BVdk_estimParam(data = sim.data, method = "L-BFGS-B",

comp.dist = list.comp, comp.param = list.param)
Estimation of the second-order moment of the known component distribution:
m2_knownComp <- mean(rnorm(n = 1000000, mean = 7, sd = 0.5)^2)
hat_s2 <- (1/estim[1]) * (mean(sim.data^2) - ((1-estim[1])*m2_knownComp)) - estim[2]^2
Estimated variance of variance estimator related to the unknown symmetric component density:

mailto:xavier.milhaud.research@gmail.com

16 BVdk_varCov_estimators

BVdk_ML_varCov_estimators(data = sim.data, hat_w = estim[1], hat_loc = estim[2],
hat_var = hat_s2, comp.dist = list.comp, comp.param = list.param)

BVdk_varCov_estimators

Estimation of the variance of the estimators in admixture models with
symmetric unknown density.

Description

Semiparametric estimation of the variance of the estimators, i.e. the mixture weight p and the
location shift parameter mu considering the admixture model with probability density function l:
l(x) = p*f(x-mu) + (1-p)*g(x), x in R, where g is the known component of the two-component
mixture, p is the unknown proportion, f is the unknown component density and mu is the location
shift. See ’Details’ below for more information.

Usage

BVdk_varCov_estimators(data, loc, p, comp.dist, comp.param)

Arguments

data The observed sample under study.

loc The estimated location shift parameter, related to the unknown symmetric den-
sity.

p The estimated unknown component weight.

comp.dist A list with two elements corresponding to component distributions (specified
with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

Details

See formulas pp.28–30 in Appendix of Bordes, L. and Vandekerkhove, P. (2010); Semiparametric
two-component mixture model when a component is known: an asymptotically normal estimator;
Math. Meth. Stat.; 19, pp. 22–41.

decontaminated_cdf 17

Value

A list containing 1) the variance-covariance matrix of the estimators (assessed at the specific time
points ’u’ and ’v’ such that u=v=mean(data)); 2) the variance of the mixture weight estimator; 3)
the variance of the location shift estimator; 4) the variance of the unknown component cumulative
distribution function at points ’u’ and ’v’ (useless for most of applications, explaining why ’u’ and
’v’ are set equal to mean(data) by default, with no corresponding arguments here).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f = 'norm', g = 'norm')
list.param <- list(f = c(mean = 4, sd = 1), g = c(mean = 7, sd = 0.5))
sim.data <- rsimmix(n=140, unknownComp_weight=0.9, comp.dist=list.comp, comp.param=list.param)
Estimate the location shift and mixture weight parameters in real-life setting:
list.comp <- list(f = NULL, g = 'norm')
list.param <- list(f = NULL, g = c(mean = 7, sd = 0.5))
estimators <- BVdk_estimParam(data = sim.data[['mixt.data']], method = "L-BFGS-B",

comp.dist = list.comp, comp.param = list.param)
Estimate the variance of the two estimators (first mixture weight, then location shift):
BVdk_varCov_estimators(data = sim.data[['mixt.data']], loc = estimators[2], p = estimators[1],

comp.dist = list.comp, comp.param = list.param)

decontaminated_cdf Provide the decontaminated cumulative distribution function (CDF) of
the unknown component in an admixture model

Description

Estimate the decontaminated CDF of the unknown component in the admixture model under study,
after inversion of the admixture cumulative distribution function. Recall that an admixture model
follows the cumulative distribution function (CDF) L, where L = p*F + (1-p)*G, with g a known
CDF and p and f unknown quantities.

Usage

decontaminated_cdf(sample1, comp.dist, comp.param, estim.p)

Arguments

sample1 Observations of the sample under study.

mailto:xavier.milhaud.research@gmail.com

18 decontaminated_cdf

comp.dist A list with two elements corresponding to the component distributions (specified
with R native names for these distributions) involved in the admixture model.
The two elements refer to the unknown and known components of the admixture
model, If there are unknown elements, they must be specified as ’NULL’ objects
(e.g. ’comp.dist’ could be set to list(f1=NULL, g1=’norm’)).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. The two elements
refer to the parameters of unknown and known components of the admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects (e.g. ’comp.param’ could be set to list(f1=NULL, g1=list(mean=0,sd=1))).

estim.p The estimated weight of the unknown component distribution, related to the
proportion of the unknown component in the admixture model studied.

Details

The decontaminated CDF is obtained by inverting the admixture CDF, given by L = p*F + (1-p)*G,
to isolate the unknown component F after having estimated p. This means that F = (1/hat(p)) *
(hat(L)-(1-p)*G).

Value

The decontaminated CDF F of the admixture model, as an of class ’stepfun’ (step function).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

####### Continuous support:
Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=3500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=3000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown CDF by inversion:
decontaminated_cdf(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])

mailto:xavier.milhaud.research@gmail.com

decontaminated_density 19

####### Countable discrete support:
list.comp <- list(f1 = 'pois', g1 = 'pois',

f2 = 'pois', g2 = 'pois')
list.param <- list(f1 = list(lambda = 3), g1 = list(lambda = 2),

f2 = list(lambda = 3), g2 = list(lambda = 4))
sample1 <- rsimmix(n=6000, unknownComp_weight=0.6, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=4500, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'pois',

f2 = NULL, g2 = 'pois')
list.param <- list(f1 = NULL, g1 = list(lambda = 2),

f2 = NULL, g2 = list(lambda = 4))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
decontaminated_cdf(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])
####### Finite discrete support:
list.comp <- list(f1 = 'multinom', g1 = 'multinom',

f2 = 'multinom', g2 = 'multinom')
list.param <- list(f1 = list(size=1, prob=c(0.3,0.4,0.3)), g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = list(size=1, prob=c(0.3,0.4,0.3)), g2 = list(size=1, prob=c(0.2,0.6,0.2)))
sample1 <- rsimmix(n=8000, unknownComp_weight=0.6, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=6000, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
list.comp <- list(f1 = NULL, g1 = 'multinom',

f2 = NULL, g2 = 'multinom')
list.param <- list(f1 = NULL, g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = NULL, g2 = list(size=1, prob=c(0.2,0.6,0.2)))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
decontaminated_cdf(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])

decontaminated_density

Provide the decontaminated density of the unknown component in an
admixture model.

Description

Estimate the decontaminated density of the unknown component in the admixture model under
study, after inversion of the admixture cumulative distribution function. Recall that an admixture
model follows the cumulative distribution function (CDF) L, where L = p*F + (1-p)*G, with g a
known CDF and p and f unknown quantities.

20 decontaminated_density

Usage

decontaminated_density(sample1, comp.dist, comp.param, estim.p)

Arguments

sample1 Observations of the first sample under study.

comp.dist A list with two elements corresponding to the component distributions (specified
with R native names for these distributions) involved in the admixture model.
The two elements refer to the unknown and known components of the admixture
model, If there are unknown elements, they must be specified as ’NULL’ objects
(e.g. ’comp.dist’ could be set to list(f1=NULL, g1=’norm’)).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. The two elements
refer to the parameters of unknown and known components of the admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects (e.g. ’comp.param’ could be set to list(f1=NULL, g1=list(mean=0,sd=1))).

estim.p The estimated weight of the unknown component distribution, related to the
proportion of the unknown component in the admixture model studied.

Details

The decontaminated density is obtained by inverting the admixture density, given by l = p*f +
(1-p)*g, to isolate the unknown component f after having estimated p.

Value

A list containing the decontaminated density of the admixture model (of class ’function’), and the
support of the observations (either discrete or continuous).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:

####### Continuous support:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=8000, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=7000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

mailto:xavier.milhaud.research@gmail.com

detect_support_type 21

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])

####### Discrete support:
list.comp <- list(f1 = 'pois', g1 = 'pois',

f2 = 'pois', g2 = 'pois')
list.param <- list(f1 = list(lambda = 3), g1 = list(lambda = 2),

f2 = list(lambda = 3), g2 = list(lambda = 4))
sample1 <- rsimmix(n=7000, unknownComp_weight=0.6, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=6000, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'pois',

f2 = NULL, g2 = 'pois')
list.param <- list(f1 = NULL, g1 = list(lambda = 2),

f2 = NULL, g2 = list(lambda = 4))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])
####### Finite discrete support:
list.comp <- list(f1 = 'multinom', g1 = 'multinom',

f2 = 'multinom', g2 = 'multinom')
list.param <- list(f1 = list(size=1, prob=c(0.3,0.4,0.3)), g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = list(size=1, prob=c(0.3,0.4,0.3)), g2 = list(size=1, prob=c(0.2,0.6,0.2)))
sample1 <- rsimmix(n=12000, unknownComp_weight=0.6, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=10000, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'multinom',

f2 = NULL, g2 = 'multinom')
list.param <- list(f1 = NULL, g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = NULL, g2 = list(size=1, prob=c(0.2,0.6,0.2)))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])

detect_support_type Detect the support of the random variables under study

22 estimVarCov_empProcess

Description

Given one or two sets of observations (two samples), the function provides with the most plausible
type of support for the underlying random variables to be studied. Basically, if less than 3 percent
of the observations have different values, we consider that the support is discrete. Otherwise, we
consider it as a continuous support.

Usage

detect_support_type(sample1, sample2 = NULL)

Arguments

sample1 The first sample of observations under study.

sample2 The second sample of observations under study.

Value

The type of support, either discrete or continuous.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate the two mixture samples:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Test the type of support:
detect_support_type(sample1[['mixt.data']], sample2[['mixt.data']])

estimVarCov_empProcess

Variance-covariance matrix of the empirical process in an admixture
model

Description

Estimate the variance-covariance matrix of some given empirical process, based on the Donsker
correlation. Compute Donsker correlation between two time points (x,y) for some given empirical
process with R code (another implementation in C++ is also available to speed up this computation).

mailto:xavier.milhaud.research@gmail.com

estimVarCov_empProcess 23

Usage

estimVarCov_empProcess(
x,
y,
obs.data,
known.p = NULL,
comp.dist = NULL,
comp.param = NULL

)

Arguments

x First time point considered for the computation of the correlation given the em-
pirical process.

y Second time point considered for the computation of the correlation given the
same empirical process.

obs.data Sample that permits to estimate the cumulative distribution function (cdf).

known.p NULL by default (only useful to compute the exact Donsker correlation). The
component weight dedicated to the unknown mixture component if available (in
case of simulation studies)

comp.dist NULL by default (only useful to compute the exact Donsker correlation). Other-
wise, a list with two elements corresponding to component distributions (spec-
ified with R native names for these distributions) involved in the admixture
model. All elements must be specified, for instance list(f=’norm’, g=’norm’).

comp.param NULL by default (only useful to compute the exact Donsker correlation). Other-
wise, a list with two elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. All elements
must be specified, for instance list(f=NULL, g=list(mean=0,sd=1)).

Value

The estimated variance-covariance matrix.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm')
list.param <- list(f1 = list(mean = 12, sd = 0.4),

g1 = list(mean = 16, sd = 0.7))
obs.data <- rsimmix(n=2500, unknownComp_weight=0.5, comp.dist=list.comp, comp.param= list.param)
Compute the variance-covariance matrix of the corresponding empirical process:
t <- seq(from = min(obs.data$mixt.data), to = max(obs.data$mixt.data), length = 50)
S2 <- sapply(t, function(s1) {

mailto:xavier.milhaud.research@gmail.com

24 gaussianity_test

sapply(t, function(s2) {
estimVarCov_empProcess(x = s1, y = s2, obs.data = obs.data$mixt.data) })

})
lattice::wireframe(S2)

gaussianity_test One-sample gaussianity test in admixture models using Bordes and
Vandekerkhove estimation method

Description

Perform the hypothesis test to know whether the unknown mixture component is gaussian or not,
knowing that the known one has support on the real line (R). The case of non-gaussian known
component can be overcome thanks to the basic transformation by cdf. Recall that an admixture
model has probability density function (pdf) l = p*f + (1-p)*g, where g is the known pdf and l is
observed (others are unknown). Requires optimization (to estimate the unknown parameters) as
defined by Bordes & Vandekerkhove (2010), which means that the unknown mixture component
must have a symmetric density.

Usage

gaussianity_test(
sample1,
comp.dist,
comp.param,
K = 3,
lambda = 0.2,
conf.level = 0.95,
support = c("Real", "Integer", "Positive", "Bounded.continuous")

)

Arguments

sample1 Observed sample with mixture distribution given by l = p*f + (1-p)*g, where f
and p are unknown and g is known.

comp.dist List with two elements corresponding to the component distributions involved in
the admixture model. Unknown elements must be specified as ’NULL’ objects.
For instance if ’f’ is unknown: list(f = NULL, g = ’norm’).

comp.param List with two elements corresponding to the parameters of the component distri-
butions, each element being a list itself. The names used in this list must corre-
spond to the native R names for distributions. Unknown elements must be speci-
fied as ’NULL’ objects (e.g. if ’f’ is unknown: list(f=NULL, g=list(mean=0,sd=1)).

K Number of coefficients considered for the polynomial basis expansion.

lambda Rate at which the normalization factor is set in the penalization rule for model
selection (in]0,1/2[). See ’Details’ below.

IBM_2samples_test 25

conf.level The confidence level, default to 95 percent. Equals 1-alpha, where alpha is the
level of the test (type-I error).

support Support of the densities under consideration, useful to choose the polynomial or-
thonormal basis. One of ’Real’, ’Integer’, ’Positive’, or ’Bounded.continuous’.

Details

See the paper ’False Discovery Rate model Gaussianity test’ (Pommeret & Vanderkerkhove, 2017).

Value

A list of 6 elements, containing: 1) the rejection decision; 2) the p-value of the test; 3) the test
statistic; 4) the variance-covariance matrix of the test statistic; 5) the selected rank for testing;
and 6) a list of the estimates (unknown component weight ’p’, shift location parameter ’mu’ and
standard deviation ’s’ of the symmetric unknown distribution).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

####### Under the null hypothesis H0.
Parameters of the gaussian distribution to be tested:
list.comp <- list(f = "norm", g = "norm")
list.param <- list(f = c(mean = 2, sd = 0.5),

g = c(mean = 0, sd = 1))
Simulate and plot the data at hand:
obs.data <- rsimmix(n = 150, unknownComp_weight = 0.9, comp.dist = list.comp,

comp.param = list.param)[['mixt.data']]
plot(density(obs.data))
Performs the test:
list.comp <- list(f = NULL, g = "norm")
list.param <- list(f = NULL, g = c(mean = 0, sd = 1))
gaussianity_test(sample1 = obs.data, comp.dist = list.comp, comp.param = list.param,

K = 3, lambda = 0.1, conf.level = 0.95, support = 'Real')

IBM_2samples_test Equality test of unknown component distributions in two admixture
models with IBM approach

Description

Two-sample test of the unknown component distribution in admixture models using Inversion - Best
Matching (IBM) method. Recall that we have two admixture models with respective probability
density functions (pdf) l1 = p1 f1 + (1-p1) g1 and l2 = p2 f2 + (1-p2) g2, where g1 and g2 are
known pdf and l1 and l2 are observed. Perform the following hypothesis test: H0 : f1 = f2 versus
H1 : f1 differs from f2.

mailto:xavier.milhaud.research@gmail.com

26 IBM_2samples_test

Usage

IBM_2samples_test(
samples,
known.p = NULL,
comp.dist = NULL,
comp.param = NULL,
sim_U = NULL,
n_sim_tab = 50,
min_size = NULL,
conf.level = 0.95,
parallel = FALSE,
n_cpu = 2

)

Arguments

samples A list of the two observed samples, where each sample follows the mixture
distribution given by l = p*f + (1-p)*g, with f and p unknown and g known.

known.p (default to NULL) Numeric vector with two elements, the known (true) mixture
weights.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

sim_U Random draws of the inner convergence part of the contrast as defined in the
IBM approach (see ’Details’ below).

n_sim_tab Number of simulated gaussian processes used in the tabulation of the inner con-
vergence distribution in the IBM approach.

min_size (default to NULL, only used with ’ICV’ testing method in the k-sample case,
otherwise useless) Minimal size among all samples (needed to take into account
the correction factor for the variance-covariance assessment).

conf.level The confidence level of the 2-samples test, i.e. the quantile level to which the
test statistic is compared.

parallel (default to FALSE) Boolean to indicate whether parallel computations are per-
formed (speed-up the tabulation).

n_cpu (default to 2) Number of cores used when parallelizing.

IBM_2samples_test 27

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

A list of five elements, containing : 1) the test statistic value; 2) the rejection decision; 3) the p-
value of the test, 4) the estimated weights of the unknown component for each of the two admixture
models, 5) the simulated distribution of the inner convergence regime (useful to perform the test
when comparing to the extreme quantile of this distribution).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

####### Under the null hypothesis H0 :
Simulate data:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = list(mean = 1, sd = 1), g1 = list(mean = 2, sd = 0.7),

f2 = list(mean = 1, sd = 1), g2 = list(mean = 3, sd = 1.2))
X.sim <- rsimmix(n= 1100, unknownComp_weight=0.85, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Y.sim <- rsimmix(n= 1200, unknownComp_weight=0.75, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),

f2 = NULL, g2 = list(mean = 3, sd = 1.2))
IBM_2samples_test(samples = list(X.sim, Y.sim), known.p = NULL, comp.dist = list.comp,

comp.param = list.param, sim_U = NULL, n_sim_tab = 6, min_size = NULL,
conf.level = 0.95, parallel = FALSE, n_cpu = 2)

####### Under the alternative H1 :
Simulate data:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = list(mean = 1, sd = 1), g1 = list(mean = 2, sd = 0.7),

f2 = list(mean = 2, sd = 1), g2 = list(mean = 3, sd = 1.2))
X.sim <- rsimmix(n= 1100, unknownComp_weight=0.85, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Y.sim <- rsimmix(n= 1200, unknownComp_weight=0.75, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),

f2 = NULL, g2 = list(mean = 3, sd = 1.2))
IBM_2samples_test(samples = list(X.sim, Y.sim), known.p = NULL, comp.dist = list.comp,

comp.param = list.param, sim_U = NULL, n_sim_tab = 6, min_size = NULL,

mailto:xavier.milhaud.research@gmail.com

28 IBM_empirical_contrast

conf.level = 0.95, parallel = FALSE, n_cpu = 2)

IBM_empirical_contrast

Empirical computation of the contrast in the Inversion - Best Matching
(IBM) method

Description

Defines the empirical version of the contrast in the IBM method, to be minimized in the optimization
process. For further details about the contrast definition, see ’Details’ below.

Usage

IBM_empirical_contrast(
par,
fixed.p.X = NULL,
sample1,
sample2,
G,
comp.dist,
comp.param

)

Arguments

par Numeric vector with two elements, corresponding to the two parameter values
at which to compute the contrast. In practice the component weights for the two
admixture models.

fixed.p.X Arbitrary value chosen by the user for the component weight related to the un-
known component of the first admixture model. Only useful for optimization
when the known components of the two models are identical (G1=G2, leading
to unidimensional optimization).

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

G Distribution on which to integrate when calculating the contrast.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

IBM_empirical_contrast 29

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

The empirical contrast value evaluated at parameter values.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2,list.param$g2))
Create the distribution on which the contrast will be integrated:
G <- stats::rnorm(n = 1000, mean = sample(c(sample1[['mixt.data']], sample2[['mixt.data']]),

size = 1000, replace = TRUE),
sd = density(c(sample1[['mixt.data']], sample2[['mixt.data']]))$bw)

Compute the empirical contrast at parameters (p1,p2) = (0.2,0.7) in a real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
IBM_empirical_contrast(par = c(0.2,0.7), fixed.p.X = NULL, sample1 = sample1[['mixt.data']],

sample2= sample2[['mixt.data']], G=G, comp.dist = list.comp, comp.param = list.param)

mailto:xavier.milhaud.research@gmail.com

30 IBM_estimProp

IBM_estimProp Estimate the weights related to the proportions of the unknown com-
ponents of the two admixture models

Description

Estimate the component weights from the Inversion - Best Matching (IBM) method, related to the
two admixture models with respective probability density function (pdf) l1 and l2, such that: l1 =
p1*f1 + (1-p1)g1 and l2 = p2f2 + (1-p2)*g2, where g1 and g2 are the known component densities.
For further details about IBM approach, see ’Details’ below.

Usage

IBM_estimProp(
sample1,
sample2,
known.prop = NULL,
comp.dist = NULL,
comp.param = NULL,
with.correction = TRUE,
n.integ = 1000

)

Arguments

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

known.prop (optional) Numeric vector with two elements, respectively the component weight
for the unknown component in the first and in the second samples.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

IBM_estimProp 31

with.correction

Boolean indicating whether the solution (estimated proportions) should be ad-
justed or not (with the constant determined thanks to the exact proportion, usu-
ally unknown except in case of simulations).

n.integ Number of data points generated for the distribution on which to integrate.

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

A list with the two estimates of the component weights for each of the admixture model, plus that
of the theoretical model if specified.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

On a simulated example to see whether the true parameters are well estimated.
Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weights of the two admixture models (provide hat(theta)_n and theta^c):
estim <- IBM_estimProp(sample1 = sample1[['mixt.data']], sample2 = sample2[['mixt.data']],

known.prop = c(0.5,0.7), comp.dist = list.comp, comp.param = list.param,
with.correction = FALSE, n.integ = 1000)

estim[['prop.estim']]
estim[['theo.prop.estim']]
On a real-life example (unknown component densities, unknown mixture weights).
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
Estimate the mixture weights of the two admixture models (provide only hat(theta)_n):
estim <- IBM_estimProp(sample1 = sample1[['mixt.data']], sample2 = sample2[['mixt.data']],

known.prop = NULL, comp.dist = list.comp, comp.param = list.param,
with.correction = FALSE, n.integ = 1000)

estim[['prop.estim']]
estim[['theo.prop.estim']]

mailto:xavier.milhaud.research@gmail.com

32 IBM_estimVarCov_gaussVect

IBM_estimVarCov_gaussVect

Nonparametric estimation of the variance-covariance matrix of the
gaussian vector in IBM approach

Description

Estimate the variance-covariance matrix of the gaussian vector at point ’z’, considering the use of
Inversion - Best Matching (IBM) method to estimate the model parameters in two-sample admixture
models. Recall that the two admixture models have respective probability density functions (pdf) l1
and l2, such that: l1 = p1*f1 + (1-p1)g1 and l2 = p2f2 + (1-p2)*g2, where g1 and g2 are the known
component densities. Further information for the IBM approach are given in ’Details’ below.

Usage

IBM_estimVarCov_gaussVect(
x,
y,
estim.obj,
fixed.p1 = NULL,
known.p = NULL,
sample1,
sample2,
min_size = NULL,
comp.dist = NULL,
comp.param = NULL

)

Arguments

x Time point at which the first (related to the first parameter) underlying empirical
process is looked through.

y Time point at which the second (related to the second parameter) underlying
empirical process is looked through.

estim.obj Object obtained from the estimation of the component weights related to the
proportions of the unknown component in each of the two admixture models.

fixed.p1 Arbitrary value chosen by the user for the component weight related to the un-
known component of the first admixture model. Only useful for optimization
when the known components of the two models are identical (G1=G2, leading
to unidimensional optimization).

known.p (optional, NULL by default) Numeric vector with two elements, the known
(true) mixture weights.

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

IBM_estimVarCov_gaussVect 33

min_size (optional, NULL by default) in the k-sample case, useful to provide the minimal
size among all samples (needed to take into account the correction factor in
variance-covariance assessment). Otherwise, useless.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

The estimated variance-covariance matrix of the gaussian vector Z = (hat(p1),(hat(p2),Dn(z)), at
location ’(x,y)’.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

######## Analysis by simulated data:
Simulate Gamma - Exponential admixtures :
list.comp <- list(f1 = "gamma", g1 = "exp",

f2 = "gamma", g2 = "exp")
list.param <- list(f1 = list(shape = 2, scale = 3), g1 = list(rate = 1/3),

f2 = list(shape = 2, scale = 3), g2 = list(rate = 1/5))
X.sim <- rsimmix(n=400, unknownComp_weight=0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Y.sim <- rsimmix(n=350, unknownComp_weight=0.9, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
Real-life setting:
list.comp <- list(f1 = NULL, g1 = "exp",

f2 = NULL, g2 = "exp")
list.param <- list(f1 = NULL, g1 = list(rate = 1/3),

f2 = NULL, g2 = list(rate = 1/5))

mailto:xavier.milhaud.research@gmail.com

34 IBM_gap

Estimate the unknown component weights in the two admixture models:
estim <- IBM_estimProp(sample1 =X.sim, sample2 =Y.sim, known.prop = NULL, comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
IBM_estimVarCov_gaussVect(x = mean(X.sim), y = mean(Y.sim), estim.obj = estim,

fixed.p1 = estim[["p.X.fixed"]], known.p = NULL, sample1=X.sim,
sample2 = Y.sim, min_size = NULL,
comp.dist = list.comp, comp.param = list.param)

IBM_gap Difference between the unknown empirical cumulative distribution
functions in two admixture models

Description

Compute the ’gap’ between two unknown cumulative distribution functions (ecdf) at some given
point, in admixture models with probability distribution function (pdf) given by l where l = p*f
+ (1-p)*g. Uses the inversion method to do so, i.e. f = (1/p) (l - (1-p)*g), where g represents the
known component of the admixture model and p is the unknown proportion of the unknown compo-
nent. Therefore, compute: D(z,L1,L2,p1,p2) = F1(z,L1,p1) - F2(z,L2,p2) This measure should be
integrated over some domain to compute the global discrepancy, see further information in ’Details’
below.

Usage

IBM_gap(z, par, fixed.p1 = NULL, sample1, sample2, comp.dist, comp.param)

Arguments

z the point at which the difference between both unknown (estimated) component
distributions is computed.

par Numeric vector with two elements, corresponding to the weights of the unknown
component for the two admixture models.

fixed.p1 (optional, NULL by default) Arbitrary value chosen by the user for the com-
ponent weight related to the unknown component of the first admixture model.
Only useful for optimization when the known components of the two models are
identical (G1=G2, leading to unidimensional optimization).

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

IBM_greenLight_criterion 35

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

the gap evaluated at the specified point between the unknown components of the two observed
samples.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

list.comp <- list(f1 = 'norm', g1 = 'norm',
f2 = 'norm', g2 = 'norm')

list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),
f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))

sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),
comp.param=list(list.param$f1,list.param$g1))

sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),
comp.param=list(list.param$f2,list.param$g2))

IBM_gap(z = 2.8, par = c(0.3,0.6), fixed.p1 = NULL, sample1 = sample1[['mixt.data']],
sample2 = sample2[['mixt.data']], comp.dist = list.comp, comp.param = list.param)

IBM_greenLight_criterion

Green-light criterion to decide whether to perform full equality test
between unknown components between two admixture models

Description

Indicate whether there is need to perform the statistical test of equality between unknown com-
ponents when comparing the unknown components of two samples following admixture models.
Based on the IBM approach, see more in ’Details’ below.

mailto:xavier.milhaud.research@gmail.com

36 IBM_greenLight_criterion

Usage

IBM_greenLight_criterion(
estim.obj,
sample1,
sample2,
comp.dist = NULL,
comp.param = NULL,
min_size = NULL,
alpha = 0.05

)

Arguments

estim.obj Object obtained from the estimation of the component weights related to the
proportions of the unknown component in each of the two admixture models
studied.

sample1 Observations of the first sample under study.
sample2 Observations of the second sample under study.
comp.dist A list with four elements corresponding to the component distributions (speci-

fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

min_size (optional, NULL by default) In the k-sample case, useful to provide the minimal
size among all samples (needed to take into account the correction factor for
variance-covariance assessment). Otherwise, useless.

alpha Confidence level at which the criterion is assessed (used to compute the confi-
dence bands of the estimators of the unknown component weights).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

A boolean indicating whether it is useful or useless to tabulate the contrast distribution in order to
answer the testing problem (f1 = f2).

IBM_hessian_contrast 37

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=550, unknownComp_weight=0.7, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=450, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the unknown component weights in the two admixture models in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
estim <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], known.prop = NULL,

comp.dist = list.comp, comp.param = list.param,
with.correction = FALSE, n.integ = 1000)

IBM_greenLight_criterion(estim.obj = estim, sample1 = sample1[['mixt.data']],
sample2 = sample2[['mixt.data']], comp.dist = list.comp,
comp.param = list.param, min_size = NULL, alpha = 0.05)

IBM_hessian_contrast Hessian matrix of the contrast function in the Inversion - Best Match-
ing (IBM) method

Description

Compute the hessian matrix of the contrast as defined in the IBM approach, at point (p1,p2). Here,
based on two samples following admixture models, where we recall that admixture models have
probability distribution function (pdf) given by l where l = p*f + (1-p)*g, where g represents the only
known quantity and l is the pdf of the observed sample. See ’Details’ below for further information
about the definition of the contrast.

Usage

IBM_hessian_contrast(
par,
fixed.p1 = NULL,
known.p = NULL,
sample1,
sample2,

mailto:xavier.milhaud.research@gmail.com

38 IBM_hessian_contrast

G,
comp.dist = NULL,
comp.param = NULL

)

Arguments

par Numeric vector with two elements (corresponding to the two unknown compo-
nent weights) at which the hessian is computed.

fixed.p1 (optional, NULL by default) Arbitrary value chosen by the user for the com-
ponent weight related to the unknown component of the first admixture model.
Only useful for optimization when the known components of the two models are
identical (G1=G2, leading to unidimensional optimization).

known.p (optional, NULL by default) Numeric vector with two elements, the known
(true) mixture weights.

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

G Distribution on which to integrate when calculating the contrast.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

the hessian matrix of the contrast.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

IBM_k_samples_test 39

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Define the distribution over which to integrate:
fit.all <- stats::density(x = c(sample1[['mixt.data']],sample2[['mixt.data']]))
G <- stats::rnorm(n = 1000, mean = sample(c(sample1[['mixt.data']], sample2[['mixt.data']]),

size = 1000, replace = TRUE), sd = fit.all$bw)
Evaluate the hessian matrix at point (p1,p2) = (0.3,0.6):
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
IBM_hessian_contrast(par = c(0.3,0.6), fixed.p1 = NULL, known.p = NULL,

sample1 = sample1[['mixt.data']], sample2 = sample2[['mixt.data']], G = G,
comp.dist = list.comp, comp.param = list.param)

IBM_k_samples_test Equality test of unknown component distributions in K admixture mod-
els, with IBM approach

Description

Test hypothesis on the unknown component of K (K > 1) admixture models using Inversion - Best
Matching method. K-samples test of the unknown component distribution in admixture models
using Inversion - Best Matching (IBM) method. Recall that we have K populations following
admixture models, each one with probability density functions (pdf) l_k = p_k*f_k + (1-p_k)*g_k,
where g_k is the known pdf and l_k corresponds to the observed sample. Perform the following
hypothesis test: H0 : f_1 = ... = f_K against H1 : f_i differs from f_j (i different from j, and i,j in
1,...,K).

Usage

IBM_k_samples_test(
samples = NULL,
sim_U = NULL,
n_sim_tab = 100,
comp.dist = NULL,
comp.param = NULL,
conf.level = 0.95,
tune.penalty = TRUE,

40 IBM_k_samples_test

parallel = FALSE,
n_cpu = 2

)

Arguments

samples A list of the K samples to be studied, all following admixture distributions.

sim_U (default to NULL) Random draws of the inner convergence part of the contrast
as defined in the IBM approach (see ’Details’ below).

n_sim_tab Number of simulated gaussian processes when tabulating the inner convergence
distribution in the IBM approach.

comp.dist A list with 2*K elements corresponding to the component distributions (spec-
ified with R native names for these distributions) involved in the K admixture
models. Elements, grouped by 2, refer to the unknown and known components
of each admixture model, If there are unknown elements, they must be specified
as ’NULL’ objects. For instance, ’comp.dist’ could be specified as follows with
K = 3: list(f1 = NULL, g1 = ’norm’, f2 = NULL, g2 = ’norm’, f3 = NULL, g3
= ’rnorm’).

comp.param A list with 2*K elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must corre-
spond to the native R argument names for these distributions. Elements, grouped
by 2, refer to the parameters of unknown and known components of each admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.param’ could be specified as follows (with K = 3):
list(f1 = NULL, g1 = list(mean=0,sd=1), f2 = NULL, g2 = list(mean=3,sd=1.1),
f3 = NULL, g3 = list(mean=-2,sd=0.6)).

conf.level The confidence level of the K-sample test.

tune.penalty A boolean that allows to choose between a classical penalty term or an opti-
mized penalty embedding some tuning parameters (automatically optimized).
Optimized penalty is particularly useful for low sample size.

parallel (default to FALSE) Boolean indicating whether parallel computations are per-
formed.

n_cpu (default to 2) Number of cores used when parallelizing.

Details

See the paper at the following HAL weblink: https://hal.science/hal-04129130

Value

A list of ten elements, containing: 1) the rejection decision; 2) the test p-value; 3) the terms involved
in the test statistic; 4) the test statistic value; 5) the selected rank (number of terms involved in the
test statistic); 6) the value of the penalized test statistic; 7) a boolean indicating whether the applied
penalty rule is that under the null H0; 8) the sorted contrast values; 9) the 95th-quantile of the
contrast distribution; 10) the final terms of the statistic; and 11) the contrast matrix.

IBM_k_samples_test 41

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

####### Under the null hypothesis H0 (with K=3 populations):
Specify the parameters of the mixture models for simulation:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm",
f3 = "norm", g3 = "norm")

list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7),
f2 = list(mean = 0, sd = 1), g2 = list(mean = 4, sd = 1.1),
f3 = list(mean = 0, sd = 1), g3 = list(mean = -3, sd = 0.8))

Simulate the data:
sim1 <- rsimmix(n = 1000, unknownComp_weight = 0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
sim2 <- rsimmix(n= 1300, unknownComp_weight = 0.6, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
sim3 <- rsimmix(n = 1100, unknownComp_weight = 0.7, comp.dist = list(list.comp$f3,list.comp$g3),

comp.param = list(list.param$f3, list.param$g3))$mixt.data
Back to the context of admixture models, where one mixture component is unknown:
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm",
f3 = NULL, g3 = "norm")

list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),
f2 = NULL, g2 = list(mean = 4, sd = 1.1),
f3 = NULL, g3 = list(mean = -3, sd = 0.8))

Perform the 3-samples test:
IBM_k_samples_test(samples = list(sim1,sim2,sim3), sim_U= NULL, n_sim_tab = 20,

comp.dist = list.comp, comp.param = list.param, conf.level = 0.95,
tune.penalty = FALSE, parallel = FALSE, n_cpu = 2)

####### Now under the alternative H1:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm",
f3 = "norm", g3 = "norm")

list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7),
f2 = list(mean = 0, sd = 1), g2 = list(mean = 4, sd = 1.1),
f3 = list(mean = 2, sd = 0.7), g3 = list(mean = 3, sd = 0.8))

sim1 <- rsimmix(n = 3000, unknownComp_weight = 0.8, comp.dist = list(list.comp$f1,list.comp$g1),
comp.param = list(list.param$f1, list.param$g1))$mixt.data

sim2 <- rsimmix(n= 3300, unknownComp_weight = 0.6, comp.dist = list(list.comp$f2,list.comp$g2),
comp.param = list(list.param$f2, list.param$g2))$mixt.data

sim3 <- rsimmix(n = 3100, unknownComp_weight = 0.7, comp.dist = list(list.comp$f3,list.comp$g3),
comp.param = list(list.param$f3, list.param$g3))$mixt.data

list.comp <- list(f1 = NULL, g1 = "norm",
f2 = NULL, g2 = "norm",
f3 = NULL, g3 = "norm")

list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),
f2 = NULL, g2 = list(mean = 4, sd = 1.1),
f3 = NULL, g3 = list(mean = 3, sd = 0.8))

IBM_k_samples_test(samples = list(sim1,sim2,sim3), sim_U= NULL, n_sim_tab = 20,

mailto:xavier.milhaud.research@gmail.com

42 IBM_tabul_stochasticInteg

comp.dist = list.comp, comp.param = list.param, conf.level = 0.95,
tune.penalty = FALSE, parallel = FALSE, n_cpu = 2)

IBM_tabul_stochasticInteg

Distribution of the contrast in the Inversion - Best Matching (IBM)
method

Description

Tabulate the distribution related to the inner convergence part of the contrast, by simulating trajecto-
ries of gaussian processes and applying some transformations. Useful to perform the test hypothesis
then, by retrieving the (1-alpha)-quantile of interest. See ’Details’ below and the cited paper therein
for further information.

Usage

IBM_tabul_stochasticInteg(
n.sim = 200,
n.varCovMat = 100,
sample1 = NULL,
sample2 = NULL,
min_size = NULL,
comp.dist = NULL,
comp.param = NULL,
parallel = FALSE,
n_cpu = 2

)

Arguments

n.sim Number of trajectories of simulated gaussian processes (number of random draws
for tabulation).

n.varCovMat Number of time points on which gaussian processes are simulated.

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

min_size (default to NULL) In the k-sample case, useful to provide the minimal size
among all samples. Otherwise, useless.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

IBM_tabul_stochasticInteg 43

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

parallel (default to FALSE) Boolean to indicate whether parallel computations are per-
formed (speed-up the tabulation).

n_cpu (default to 2) Number of cores used for computations when parallelizing.

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

A list with four elements, containing: 1) random draws of the quantity ’sample size times the
empirical contrast’, as defined in the IBM approach (see ’Details’ above); 2) the estimated unknown
component weights for the two admixture models; 3) the value of the quantity ’sample size times
the empirical contrast’; 4) the sequence of points in the support that were used to evaluate the
variance-covariance matrix of empirical processes.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 1, sd = 1), g1 = list(mean = 2, sd = 0.7),

f2 = list(mean = 1, sd = 1), g2 = list(mean = 3, sd = 1.2))
X.sim <- rsimmix(n=1000, unknownComp_weight=0.7, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Y.sim <- rsimmix(n=1200, unknownComp_weight=0.6, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
Tabulate 1st term of stochastic integral (inner convergence) in a real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),

f2 = NULL, g2 = list(mean = 3, sd = 1.2))
U <- IBM_tabul_stochasticInteg(n.sim = 2, n.varCovMat = 20, sample1 = X.sim, sample2 = Y.sim,

min_size = NULL, comp.dist = list.comp, comp.param = list.param,
parallel = FALSE, n_cpu = 2)

mailto:xavier.milhaud.research@gmail.com

44 IBM_theoretical_contrast

IBM_theoretical_contrast

Theoretical contrast in the Inversion - Best Matching (IBM) method

Description

Defines the theoretical contrast in the IBM approach. Useful in case of simulation studies, since all
parameters are known to the user. For further information about the considered contrast in the IBM
approach, see ’Details’ below.

Usage

IBM_theoretical_contrast(
par,
theo.par,
fixed.p.X = NULL,
G = NULL,
comp.dist,
comp.param,
sample1,
sample2

)

Arguments

par Numeric vector with two elements, corresponding to the two parameter values
at which to compute the contrast. In practice the component weights for the two
admixture models.

theo.par Numeric vector with two elements, the known (true) mixture weights.

fixed.p.X Arbitrary value chosen by the user for the component weight related to the un-
known component of the first admixture model. Only useful for optimization
when the known components of the two models are identical (G1=G2, leading
to unidimensional optimization).

G Distribution on which to integrate when calculating the contrast.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admixture
model. No unknown elements permitted. For instance, ’comp.dist’ could be
specified as follows: list(f1=’rnorm’, g1=’norm’, f2=’rnorm’, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture

IBM_theoretical_gap 45

model. No unknown elements permitted. For instance, ’comp.param’ could be
specified as follows: : list(f1 = list(mean=2,sd=0.3), g1 = list(mean=0,sd=1), f2
= list(mean=2,sd=0.3), g2 = list(mean=3,sd=1.1)).

sample1 Observations of the first sample under study.

sample2 Observations of the second sample under study.

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

The theoretical contrast value evaluated at parameter values.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Create the distribution on which the contrast will be integrated:
G <- stats::rnorm(n = 1000, mean = sample(c(sample1[['mixt.data']],sample2[['mixt.data']]),

size = 1000, replace = TRUE),
sd = stats::density(c(sample1[['mixt.data']],sample2[['mixt.data']]))$bw)

Compute the theoretical contrast at parameters (p1,p2) = (0.2,0.7):
IBM_theoretical_contrast(par = c(0.2,0.7), theo.par = c(0.5,0.7), fixed.p.X = NULL, G = G,

comp.dist = list.comp, comp.param = list.param,
sample1 = sample1[['mixt.data']], sample2 = sample2[['mixt.data']])

IBM_theoretical_gap Difference between unknown cumulative distribution functions of ad-
mixture models at some given point

mailto:xavier.milhaud.research@gmail.com

46 IBM_theoretical_gap

Description

Compute the gap between the unknown cumulative distribution functions of the two considered
admixture models at some given point, where each admixture model has probability distribution
function (pdf) given by l where l = p*f + (1-p)*g. Uses the inversion method to do so, i.e. f = (1/p)
(l - (1-p)g), where g represents the known component of the admixture model and p is the proportion
of the unknown component. This difference must be integrated over some domain to compute the
global discrepancy, as introduced in the paper presenting the IBM approach (see ’Details’ below).

Usage

IBM_theoretical_gap(z, par, known.p = c(0.5, 0.5), comp.dist, comp.param)

Arguments

z Point at which the difference between the unknown component distributions of
the two considered admixture models is computed.

par Numeric vector with two elements, corresponding to the two parameter values
at which to compute the gap. In practice the component weights for the two
admixture models.

known.p Numeric vector with two elements, the known (true) mixture weights.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admixture
model. No unknown elements permitted. For instance, ’comp.dist’ could be
specified as follows: list(f1=’rnorm’, g1=’norm’, f2=’rnorm’, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. No unknown elements permitted. For instance, ’comp.param’ could be
specified as follows: : list(f1 = list(mean=2,sd=0.3), g1 = list(mean=0,sd=1), f2
= list(mean=2,sd=0.3), g2 = list(mean=3,sd=1.1)).

Details

See the paper presenting the IBM approach at the following HAL weblink: https://hal.science/hal-
03201760

Value

The gap between F1 and F2 (unknown components of the two admixture models), evaluated at the
specified point.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

is_equal_knownComp 47

Examples

list.comp <- list(f1 = 'norm', g1 = 'norm',
f2 = 'norm', g2 = 'norm')

list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),
f2 = list(mean = 1, sd = 0.1), g2 = list(mean = 5, sd = 2))

IBM_theoretical_gap(z = 2.8, par = c(0.3,0.6), known.p = c(0.5,0.5),
comp.dist = list.comp, comp.param = list.param)

is_equal_knownComp Test for equality of the known components between two admixture
models

Description

Test if the known components coming from the two two-components admixture models are the
same.

Usage

is_equal_knownComp(comp.dist, comp.param)

Arguments

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

Value

A boolean (TRUE if the known components are the same, otherwise FALSE).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

48 kernel_cdf

Examples

list.comp <- list(f1 = 'norm', g1 = 'norm',
f2 = 'norm', g2 = 'norm')

list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),
f2 = list(mean = 2, sd = 0.3), g2 = list(mean = 0, sd = 1))

is_equal_knownComp(comp.dist = list.comp, comp.param = list.param)

kernel_cdf Kernel estimation

Description

Functions to perform the estimation of cumulative distribution function (cdf) by kernel estimators
(with a non-gaussian kernel).

Usage

kernel_cdf(u, h)

Arguments

u the point at which the estimation is made.

h window of the kernel estimation.

Value

the estimated value of the cdf.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

kernel_cdf(0.4,0.5)

mailto:xavier.milhaud.research@gmail.com

kernel_density 49

kernel_density Kernel estimation

Description

Functions to perform the estimation of probability density function (pdf) by kernel estimators (with
a non-gaussian kernel).

Usage

kernel_density(u, h)

Arguments

u the point at which the estimation is made.

h window of the kernel estimation.

Value

the estimated value of the pdf.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

kernel_density(0.4,0.5)

knownComp_to_uniform Transforms the known component of the admixture distribution to a
Uniform distribution

Description

In admixture such that the probability density function (pdf) follows l = p*f + (1-p)*g, where p
is the unknown weight and f is the unknown component distribution: transforms g of the two-
component mixture ditribution to a Uniform distribution. Useful to use Patra and Sen estimator for
the estimation of the unknown weight p.

Usage

knownComp_to_uniform(data, comp.dist, comp.param)

mailto:xavier.milhaud.research@gmail.com

50 milkyWay

Arguments

data Observations of the sample under study, following an admixture distribution.
comp.dist A list with two elements corresponding to component distributions (specified

with R native names for these distributions) involved in the admixture model.
Unknown elements must be specified as ’NULL’ objects, e.g. when ’f’ is un-
known: list(f=NULL, g=’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must cor-
respond to the native R argument names for these distributions. Unknown ele-
ments must be specified as ’NULL’ objects, e.g. if ’f’ is unknown: list(f=NULL,
g=list(mean=0,sd=1)).

Value

The transformed data, i.e. the transformed mixture distribution where the known component g now
follows a Uniform(0,1) distribution.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5),

g1 = list(mean = 0, sd = 1))
sample1 <- rsimmix(n=1500, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
plot_mixt_density(samples = list(sample1[['mixt.data']]), support = 'continuous')
Transform the known component into a Uniform(0,1) distribution:
list.comp <- list(f1 = NULL, g1 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1))
transformed_data <- knownComp_to_uniform(data = sample1[['mixt.data']],

comp.dist = list.comp, comp.param = list.param)
plot_mixt_density(samples = list(transformed_data), support = 'continuous')

milkyWay Heliocentric velocity measured for the Milky Way (from Walker, M.
G., M. Mateo, E. W. Olszewski, O. Y. Gnedin, X. Wang, B. Sen, and
M. Woodroofe (2007). Velocity dispersion profiles of seven dwarf
spheroidal galaxies. Astrophysical J. 667(1), L53–L56).

Description

Heliocentric velocity measured for the Milky Way (from Walker, M. G., M. Mateo, E. W. Olszewski,
O. Y. Gnedin, X. Wang, B. Sen, and M. Woodroofe (2007). Velocity dispersion profiles of seven
dwarf spheroidal galaxies. Astrophysical J. 667(1), L53–L56).

mailto:xavier.milhaud.research@gmail.com

mortality_sample 51

Usage

milkyWay

Format

A data frame with 170,601 rows and 1 column:

V1 Heliocentric velocity measurements of the Milky way

Source

https://www.aanda.org/articles/aa/full_html/2018/08/aa32905-18/aa32905-18.html

mortality_sample Dataset giving exposure-to-death (population size) and number of
deaths for males in eleven european countries, with ages ranging from
30 years old to 85 years old.

Description

Dataset giving exposure-to-death (population size) and number of deaths for males in eleven euro-
pean countries, with ages ranging from 30 years old to 85 years old.

Usage

mortality_sample

Format

Two different lists related to the reduced (subsample) population size and reduced number of deaths
in eleven european countries, for male people aged 30 years old to 85 years old between 1908 and
2020. The data were exported from the Human Mortality Database (HMD).

An evolving data frame of exposure-to-death and number of deaths in Belgium, Switzerland, Den-
mark, Spain, Finland, France, United Kingdom, Italia, The Netherlands, Norway and Sweden.

XP A list of eleven elements (one for each country) giving a subset of the exposure-to-death (or
reduced population size), each element having 56 rows (ages 30-85) and 113 columns (period
1908-2020)

DX A list of eleven elements (one for each country) giving a subset of the number of deaths, each
element having 56 rows (ages 30-85) and 113 columns (period 1908-2020)

names A list of eleven elements giving the names of the countries, in the same order as the elements
in other lists

Source

https://www.mortality.org

https://www.aanda.org/articles/aa/full_html/2018/08/aa32905-18/aa32905-18.html
https://www.mortality.org

52 orthoBasis_coef

orthoBasis_coef Compute expansion coefficients in a given orthonormal polynomial
basis.

Description

Compute the coefficients corresponding to the decomposition of some density in a given orthonor-
mal polynomial basis.

Usage

orthoBasis_coef(
data,
comp.dist = NULL,
comp.param = NULL,
supp = c("Real", "Integer", "Positive", "Bounded.continuous"),
degree,
m = 3,
other = NULL

)

Arguments

data Observed sample from which the coefficients are calculated. Can be NULL if
’comp.dist’ and ’comp.param’ are specified.

comp.dist (default to NULL) A list with two elements corresponding to component distri-
butions (specified with R native names for these distributions) involved in the
admixture model. Unknown elements must be specified as ’NULL’ objects (for
instance unknown ’f’: list(f=NULL, g=’norm’)).

comp.param (default to NULL) A list with two elements corresponding to the parameters of
the component distributions, each element being a list itself. The names used in
this list must correspond to the native R argument names for these distributions.
Unknown elements must be specified as ’NULL’ objects. For instance if ’f’ is
unknown: list(f = NULL, g = list(mean=0,sd=1)).

supp Support of the density considered.

degree Degree up to which the polynomial basis is built.

m (default to 3) Only used when support is ’Integer’. Corresponds to the mean of
the reference measure, i.e. Poisson(m).

other (default to NULL) A list to precise bounds when the support is bounded, where
the second and fourth elements give bounds.

Value

The list composed of ’degree’ elements, each element being a numeric vector (with sample size)
where each value represents the k-th order coefficient found when decomposing the density in the
orthonormal polynomial basis.

orthoBasis_test_H0 53

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
sample1 <- rnorm(n = 7000, mean = 3, sd = 1)
Compute the expansion coefficients in the orthonormal polynomial basis:
coeff <- orthoBasis_coef(data = sample1, comp.dist = NULL, comp.param = NULL, supp = 'Real',

degree = 3, m = 3, other = NULL)
sapply(coeff, mean)
No observed data and decomposition of the known component of the admixture model:
coeff <- orthoBasis_coef(data = NULL, comp.dist = list(NULL, 'norm'),

comp.param=list(NULL,list(mean=3,sd=1)), supp = 'Real', degree=3, m=3, other = NULL)
sapply(coeff, mean)

orthoBasis_test_H0 Equality test of unknown components between two admixture models
using polynomial basis expansions

Description

Test the null hypothesis (H0: f1=f2) using the decomposition of unknown densities of the two
admixture distributions in an adequate orthonormal polynomial basis. Recall that we have two
admixture models with respective probability density functions (pdf) l1 = p1*f1 + (1-p1)g1 and l2
= p2f2 + (1-p2)*g2, where g1 and g2 are the only known elements. The admixture weights p1 and
p2 thus have to be estimated. For further information on this method, see ’Details’ below.

Usage

orthoBasis_test_H0(
samples,
known.p = NULL,
comp.dist = NULL,
comp.param = NULL,
known.coef = NULL,
K = 3,
nb.ssEch = 2,
s = 0.49,
var.explicit = TRUE,
nb.echBoot = NULL,
support = c("Real", "Integer", "Positive", "Bounded.continuous", "Bounded.discrete"),
bounds.supp = NULL,
est.method = c("BVdk", "PS"),
uniformized.knownComp_data = NULL

)

mailto:xavier.milhaud.research@gmail.com

54 orthoBasis_test_H0

Arguments

samples A list of the two observed samples, where each sample follows the mixture
distribution given by l = p*f + (1-p)*g, with f and p unknown and g known.

known.p (default to NULL) Numeric vector with two elements, respectively the compo-
nent weight for the unknown component in the first and in the second samples.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

known.coef Coefficients in the polynomial basis expansion, corresponding to the known
component densities g1 and g2.

K Number of coefficients considered for the polynomial basis expansion.

nb.ssEch Number of subsamples created from the original data to decorrelate the estima-
tion of the different parameters.

s Rate at which the normalization factor is set in the penalization rule for model
selection (in]0,1/2[), see ’Details’.

var.explicit Boolean that allows to choose between explicit assessment of the variance of
the test statistic or not (FALSE=bootstrap), FIXME : it seems that bootstrap
procedure does not work in the context of admixtures.

nb.echBoot number of bootstrap samples if ’var.explicit’ is set to FALSE.

support support of the densities under consideration, useful to choose the polynomial
orthonormal basis.

bounds.supp (default to NULL) useful if support = ’bounded’, a list of minimum and max-
imum bounds, specified as following: list(list(min.f1,min.g1,min.f2,min.g2) ,
list(max.f1,max.g1,max.f2,max.g2))

est.method Estimation method to get the component weights, either ’PS’ (Patra and Sen
estimation) or ’BVdk’ (Bordes and Vendekerkhove estimation).

uniformized.knownComp_data

(default to NULL) Only useful if ’est.method’ has been set to ’PS’, and for
real-life applications where the distribution of the known component of the ad-
mixture model is also unknown. In this case, this known component is pre-
viously made uniformly(0,1)-distributed by applying the empirical cumulative
distribution of the known component function on the data. This means that all
’comp.dist’ and ’comp.param’ must be set to NULL.

PatraSen_cv_mixmodel 55

Details

See the paper on HAL website: https://hal.science/hal-03692868

Value

A list with six elements containing: 1) the rejection decision; 2) the p-value of the test; 3) the test
statistic; 4) the variance-covariance matrix of the test statistic; 5) selected rank for testing, and 6)
estimates of the two component weights.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Using Bordes and Vandekerkhove estimation (valid if symmetric unknown component densities).
Under the null hypothesis H0.
Simulate data:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = c(mean = 1, sd = 1), g1 = c(mean = 4, sd = 1),

f2 = c(mean = 1, sd = 1), g2 = c(mean = 5, sd = 0.5))
sim.X <- rsimmix(n = 250, unknownComp_weight=0.9, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
sim.Y <- rsimmix(n = 300, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
plot_mixt_density(samples = list(sim.X, sim.Y), support = "continuous")
Perform the hypothesis test in real-life conditions:
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = c(mean = 4, sd = 1),

f2 = NULL, g2 = c(mean = 5, sd = 0.5))
test <- orthoBasis_test_H0(samples = list(sim.X, sim.Y),

known.p=NULL, comp.dist = list.comp, comp.param = list.param, known.coef=NULL, K=3,
nb.ssEch = 2, s = 0.25, var.explicit=TRUE, nb.echBoot=NULL, support = 'Real',
bounds.supp = NULL, est.method = 'BVdk', uniformized.knownComp_data = NULL)

test$rejection_rule

PatraSen_cv_mixmodel Cross-validation estimate (by Patra and Sen) of the unknown compo-
nent weight as well as the unknown distribution in an admixture model

mailto:xavier.milhaud.research@gmail.com

56 PatraSen_cv_mixmodel

Description

Estimation of unknown elements (by Patra and Sen method) under the admixture model with prob-
ability density function l: l = p*f + (1-p)*g, where g is the known component of the two-component
admixture, p is the unknown proportion of the unknown component distribution f. The estimated
unknown component weight p is selected using a cross-validation technique that helps to choose
the right penalization, see ’Details’ below for further information.

Usage

PatraSen_cv_mixmodel(
data,
folds = 10,
reps = 1,
cn.s = NULL,
cn.length = NULL,
gridsize = 200

)

Arguments

data Sample where the known component density of the admixture model has been
transformed into a Uniform(0,1) distribution.

folds (default to 10) Number of folds used for cross-validation.

reps (default to 1) Number of replications for cross-validation.

cn.s (default to NULL) A sequence of ’c.n’ to be used for cross-validation (vector of
values).

cn.length (default to NULL) Number of equally spaced tuning parameter (between .001 x
log(log(n)) and 0.2 x log(log(n))). Values to search from.

gridsize (default to 200) Number of equally spaced points (between 0 and 1) to evaluate
the distance function. Larger values are more computationally intensive but also
lead to more accurate estimates.

Details

See Patra, R.K. and Sen, B. (2016); Estimation of a Two-component Mixture Model with Applica-
tions to Multiple Testing; JRSS Series B, 78, pp. 869–893.

Value

A list containing ’alp.hat’ (estimate of the unknown component weight), ’Fs.hat’ (list with ele-
ments ’x’ and ’y’ values for the function estimate of the unknown cumultaive distribution function),
’dist.out’ which is an object of the class ’dist.fun’ using the complete data.gen, ’c.n’ the value of the
tuning parameter used to compute the final estimate, and finally ’cv.out’ which is an object of class
’cv.mixmodel’. The object is NULL if method is "fixed".

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

PatraSen_density_est 57

Examples

Simulate data:
comp.dist <- list(f = 'norm', g = 'norm')
comp.param <- list(f = list(mean = 3, sd = 0.5),

g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 2000, unknownComp_weight = 0.3, comp.dist, comp.param)[['mixt.data']]
Transform the known component of the admixture model into a Uniform(0,1) distribution:
comp.dist <- list(f = NULL, g = 'norm')
comp.param <- list(f = NULL, g = list(mean = 0, sd = 1))
data1_transfo <- knownComp_to_uniform(data = data1, comp.dist = list(comp.dist$f, comp.dist$g),

comp.param = list(comp.param$f, comp.param$g))
plot(density(data1_transfo))
Estimate the proportion of the unknown component of the admixture model:
PatraSen_cv_mixmodel(data = data1_transfo, folds = 3, reps = 1, cn.s = NULL,

cn.length = 3, gridsize = 100)$alp.hat

PatraSen_density_est Compute the estimate of the density of the unknown component in an
admixture model

Description

Compute by Patra and Sen technique the estimate of f.s (density corresponding to F.s) when f.s is
known to be either decreasing or increasing.

Usage

PatraSen_density_est(input, dec.density = TRUE)

Arguments

input an R object of class ’cv.mixmodel’ or ’mixmodel’.

dec.density a boolean indicating whether the density is increasing or decreasing.

Details

See Patra, R.K. and Sen, B. (2016); Estimation of a Two-component Mixture Model with Applica-
tions to Multiple Testing; JRSS Series B, 78, pp. 869–893.

Value

an estimator of the unknown component density.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

58 PatraSen_dist_calc

Examples

comp.dist <- list(f = 'norm', g = 'norm')
comp.param <- list(f = list(mean = 3, sd = 0.5), g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 2000, unknownComp_weight = 0.6, comp.dist, comp.param)[['mixt.data']]
data1_transfo <- knownComp_to_uniform(data = data1, comp.dist = list(comp.dist$f, comp.dist$g),

comp.param = list(comp.param$f, comp.param$g))
res <- PatraSen_cv_mixmodel(data = data1_transfo, folds = 3, reps = 1, cn.s = NULL,

cn.length = 3, gridsize = 200)
PatraSen_density_est(res, dec.density = TRUE)

PatraSen_dist_calc Compute the distance to be minimized using Patra and Sen estimation
technique in admixture models

Description

Compute the distance to be minimized using Patra and Sen estimation technique by integrating
along some given grid the appropriate distance. For further developments, see ’Details’ below.

Usage

PatraSen_dist_calc(data, gridsize = 200)

Arguments

data Sample where the known component density of the admixture model has been
transformed into a Uniform(0,1) distribution.

gridsize Gridsize to make the computations.

Details

See Patra, R.K. and Sen, B. (2016); Estimation of a Two-component Mixture Model with Applica-
tions to Multiple Testing; JRSS Series B, 78, pp. 869–893.

Value

a list containing the evaluated distance and some additional information.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

PatraSen_est_mix_model 59

Examples

comp.dist <- list(f = 'norm', g = 'norm')
comp.param <- list(f = list(mean = 3, sd = 0.5), g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 3000, unknownComp_weight = 0.6, comp.dist, comp.param)[['mixt.data']]
data1_transfo <- knownComp_to_uniform(data = data1, comp.dist = list(comp.dist$f, comp.dist$g),

comp.param = list(comp.param$f, comp.param$g))
PatraSen_dist_calc(data = data1_transfo, gridsize = 200)

PatraSen_est_mix_model

Estimate by Patra and Sen the unknown component weight as well as
the unknown distribution in admixture models

Description

Estimation of unknown elements (by Patra and Sen method) under the admixture model with prob-
ability density function l: l = p*f + (1-p)*g, where g is the known component of the two-component
mixture, p is the unknown proportion of the unknown component distribution f. More information
in ’Details’ below concerning the estimation method.

Usage

PatraSen_est_mix_model(
data,
method = c("lwr.bnd", "fixed", "cv"),
c.n = NULL,
folds = 10,
reps = 1,
cn.s = NULL,
cn.length = 100,
gridsize = 600

)

Arguments

data Sample where the known component density of the admixture model has been
transformed into a Uniform(0,1) distribution.

method Either ’fixed’ or ’cv’, depending on whether compute the estimate based on the
value of ’c.n’ or use cross-validation for choosing ’c.n’ (tuning parameter).

c.n A positive number, with default value equal to 0.1 log(log(n)), where ’n’ is the
length of the observed sample.

folds Number of folds used for cross-validation, default is 10.

reps Number of replications for cross-validation, default is 1.

60 plot.decontaminated_density

cn.s A sequence of ’c.n’ to be used for cross-validation (vector of values). De-
fault is equally spaced grid of 100 values between .001 x log(log(n)) and 0.2
x log(log(n)).

cn.length (default to 100) Number of equally spaced tuning parameter (between .001 x
log(log(n)) and 0.2 x log(log(n))). Values to search from.

gridsize (default to 600) Number of equally spaced points (between 0 and 1) to evaluate
the distance function. Larger values are more computationally intensive but also
lead to more accurate estimates.

Details

See Patra, R.K. and Sen, B. (2016); Estimation of a Two-component Mixture Model with Applica-
tions to Multiple Testing; JRSS Series B, 78, pp. 869–893.

Value

A list containing ’alp.hat’ (estimate of the unknown component weight), ’Fs.hat’ (list with ele-
ments ’x’ and ’y’ values for the function estimate of the unknown cumulative distribution function),
’dist.out’ which is an object of the class ’dist.fun’ using the complete data.gen, ’c.n’ the value of the
tuning parameter used to compute the final estimate, and finally ’cv.out’ which is an object of class
’cv.mixmodel’. The object is NULL if method is "fixed".

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data:
list.comp <- list(f = 'norm', g = 'norm')
list.param <- list(f = list(mean = 3, sd = 0.5),

g = list(mean = 0, sd = 1))
data1 <- rsimmix(n = 1500, unknownComp_weight = 0.8, list.comp, list.param)[['mixt.data']]
Transform the known component of the admixture model into a Uniform(O,1) distribution:
list.comp <- list(f = NULL, g = 'norm')
list.param <- list(f = NULL, g = list(mean = 0, sd = 1))
data1_transfo <- knownComp_to_uniform(data = data1, comp.dist=list.comp, comp.param=list.param)
PatraSen_est_mix_model(data = data1_transfo, method = 'fixed',

c.n = 0.1*log(log(length(data1_transfo))), gridsize = 1000)$alp.hat

plot.decontaminated_density

Plot the decontaminated density of the unknown component for an es-
timated admixture model

mailto:xavier.milhaud.research@gmail.com

plot.decontaminated_density 61

Description

Plot the decontaminated density of the unknown component in the admixture model under study,
after inversion of the admixture cumulative distribution function. Recall that an admixture model
follows the cumulative distribution function (CDF) L, where L = p*F + (1-p)*G, with g a known
CDF and p and f unknown quantities.

Usage

S3 method for class 'decontaminated_density'
plot(x, ..., x_val, add_plot = FALSE)

Arguments

x An object of class ’decontamin_dens’ (see ?decontaminated_density).

... Arguments to be passed to methods, such as graphical parameters (see par).

x_val A vector of X-axis values at which to plot the decontaminated density f.

add_plot (default to FALSE) A boolean specifying if one plots the decontaminated density
over an existing plot. Used for visual comparison purpose.

Details

The decontaminated density is obtained by inverting the admixture density, given by l = p*f +
(1-p)*g, to isolate the unknown component f after having estimated p.

Value

The plot of the decontaminated density.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

####### Continuous support:
Simulate data:
list.comp <- list(f1 = 'norm', g1 = 'norm',

f2 = 'norm', g2 = 'norm')
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 5, sd = 2))
sample1 <- rsimmix(n=3000, unknownComp_weight=0.7, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=2500, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'norm',

f2 = NULL, g2 = 'norm')
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 5, sd = 2))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

mailto:xavier.milhaud.research@gmail.com

62 plot.decontaminated_density

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
res1 <- decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])
res2 <- decontaminated_density(sample1 = sample2[['mixt.data']], comp.dist = list.comp[3:4],

comp.param = list.param[3:4], estim.p = estimate$prop.estim[2])
Use appropriate sequence of x values:
plot(x = res1, x_val = seq(from = 0, to = 6, length.out = 100), add_plot = FALSE)
plot(x = res2, col = "red", x_val = seq(from = 0, to = 6, length.out = 100), add_plot = TRUE)

####### Countable discrete support:
list.comp <- list(f1 = 'pois', g1 = 'pois',

f2 = 'pois', g2 = 'pois')
list.param <- list(f1 = list(lambda = 3), g1 = list(lambda = 2),

f2 = list(lambda = 3), g2 = list(lambda = 4))
sample1 <- rsimmix(n=4000, unknownComp_weight=0.7, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=3500, unknownComp_weight=0.85, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'pois',

f2 = NULL, g2 = 'pois')
list.param <- list(f1 = NULL, g1 = list(lambda = 2),

f2 = NULL, g2 = list(lambda = 4))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
res1 <- decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])
res2 <- decontaminated_density(sample1 = sample2[['mixt.data']], comp.dist = list.comp[3:4],

comp.param = list.param[3:4], estim.p = estimate$prop.estim[2])
Use appropriate sequence of x values:
plot(x = res1, x_val = seq(from = 0, to = 15, by = 1), add_plot = FALSE)
plot(x = res2, col = "red", x_val= seq(from=0,to=15,by=1), add_plot = TRUE)

####### Finite discrete support:
list.comp <- list(f1 = 'multinom', g1 = 'multinom',

f2 = 'multinom', g2 = 'multinom')
list.param <- list(f1 = list(size=1, prob=c(0.3,0.4,0.3)), g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = list(size=1, prob=c(0.3,0.4,0.3)), g2 = list(size=1, prob=c(0.2,0.6,0.2)))
sample1 <- rsimmix(n=4000, unknownComp_weight=0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))
sample2 <- rsimmix(n=3500, unknownComp_weight=0.9, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))
Estimate the mixture weight in each of the sample in real-life setting:
list.comp <- list(f1 = NULL, g1 = 'multinom',

f2 = NULL, g2 = 'multinom')
list.param <- list(f1 = NULL, g1 = list(size=1, prob=c(0.6,0.3,0.1)),

f2 = NULL, g2 = list(size=1, prob=c(0.2,0.6,0.2)))
estimate <- IBM_estimProp(sample1[['mixt.data']], sample2[['mixt.data']], comp.dist = list.comp,

comp.param = list.param, with.correction = FALSE, n.integ = 1000)
Determine the decontaminated version of the unknown density by inversion:
res1 <- decontaminated_density(sample1 = sample1[['mixt.data']], comp.dist = list.comp[1:2],

plot_mixt_density 63

comp.param = list.param[1:2], estim.p = estimate$prop.estim[1])
res2 <- decontaminated_density(sample1 = sample2[['mixt.data']], comp.dist = list.comp[3:4],

comp.param = list.param[3:4], estim.p = estimate$prop.estim[2])
Use appropriate sequence of x values:
plot(x = res1, x_val = seq(from = 0, to=6, by = 1), add_plot = FALSE)
plot(x = res2, col = "red", x_val = seq(from = 0, to = 6, by = 1), add_plot = TRUE)

plot_mixt_density Plot the density of some given sample(s) with mixture distributions.

Description

Plot the density of the sample(s) with optional arguments to improve the visualization.

Usage

plot_mixt_density(
samples,
user.bounds = NULL,
support = c("continuous", "discrete"),
main = ""

)

Arguments

samples Observed samples (mixture distributions) from which the density will be plotted.

user.bounds (default to NULL) Bounds to limit the range of x-axis when plotting.

support Support of the distributions, to know whether density plot or histogram should
be displayed.

main Title for the plot.

Value

a plot with the densities of the samples provided as inputs.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Continuous support:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm",
f3 = "norm", g3 = "norm")

list.param <- list(f1 = list(mean = 5, sd = 1), g1 = list(mean = 2, sd = 0.7),
f2 = list(mean = 0, sd = 1), g2 = list(mean = -3, sd = 1.1),

mailto:xavier.milhaud.research@gmail.com

64 poly_orthonormal_basis

f3 = list(mean = 9, sd = 1), g3 = list(mean = 6, sd = 2))
Simulate data:
sim1 <- rsimmix(n = 300, unknownComp_weight = 0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
sim2 <- rsimmix(n= 250, unknownComp_weight = 0.85, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
sim3 <- rsimmix(n= 400, unknownComp_weight = 0.6, comp.dist = list(list.comp$f3,list.comp$g3),

comp.param = list(list.param$f3, list.param$g3))$mixt.data
plot_mixt_density(samples = list(sim1,sim2,sim3), user.bounds = NULL, support = "continuous")

####### Countable discrete support:
list.comp <- list(f1 = 'pois', g1 = 'pois',

f2 = 'pois', g2 = 'pois')
list.param <- list(f1 = list(lambda = 7), g1 = list(lambda = 1),

f2 = list(lambda = 2), g2 = list(lambda = 15))
sim1 <- rsimmix(n=4000, unknownComp_weight=0.5, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param=list(list.param$f1,list.param$g1))$mixt.data
sim2 <- rsimmix(n=3500, unknownComp_weight=0.3, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param=list(list.param$f2,list.param$g2))$mixt.data
plot_mixt_density(samples = list(sim1,sim2), user.bounds = NULL, support = "discrete")

poly_orthonormal_basis

Build an orthonormal basis to decompose some given probability den-
sity function

Description

Build an orthonormal basis, needed to decompose the probability density function (pdf) of the
unknown component from the admixture, depending on the support under consideration.

Usage

poly_orthonormal_basis(
support = c("Real", "Integer", "Positive", "Bounded.continuous", "Bounded.discrete"),
deg,
x,
m

)

Arguments

support Support of the random variables implied in the two-component mixture distri-
bution.

deg Degree up to which the basis is built.
x (NULL by default) Only used when support is ’Integer’. The point at which the

polynomial value will be evaluated.
m (NULL by default) Only used when support is ’Integer’. Corresponds to the

mean of the reference measure, i.e. Poisson(m).

print.admix_cluster 65

Value

the orthonormal polynomial basis used to decompose the density of the unknown component of the
mixture distribution.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

poly_orthonormal_basis(support = 'Real', deg = 10, x = NULL, m = NULL)

print.admix_cluster Results of the clustering algorithm performed over the K populations
following admixture models.

Description

Print the detected clusters among the populations under study. This method also prints the number
of clusters, the p-values of statistical tests performed when building the clusters, the estimated
weights of the unknown component distributions inside each cluster, and the discrepancy matrix.
The latter represents some kind of distance between the populations.

Usage

S3 method for class 'admix_cluster'
print(x, ...)

Arguments

x An object of class ’admix_cluster’ (see ?admix_clustering).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Simulate data (chosen parameters indicate 2 clusters (populations (1,3), (2,4))!):
list.comp <- list(f1 = "gamma", g1 = "exp",

f2 = "gamma", g2 = "exp",
f3 = "gamma", g3 = "gamma",
f4 = "gamma", g4 = "exp")

list.param <- list(f1 = list(shape = 16, rate = 4), g1 = list(rate = 1/3.5),
f2 = list(shape = 14, rate = 2), g2 = list(rate = 1/5),
f3 = list(shape = 16, rate = 4), g3 = list(shape = 12, rate = 2),

mailto:xavier.milhaud.research@gmail.com
mailto:xavier.milhaud.research@gmail.com

66 print.admix_estim

f4 = list(shape = 14, rate = 2), g4 = list(rate = 1/7))
A.sim <- rsimmix(n=2600, unknownComp_weight=0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
B.sim <- rsimmix(n=3000, unknownComp_weight=0.7, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
C.sim <- rsimmix(n=3500, unknownComp_weight=0.6, comp.dist = list(list.comp$f3,list.comp$g3),

comp.param = list(list.param$f3, list.param$g3))$mixt.data
D.sim <- rsimmix(n=4800, unknownComp_weight=0.5, comp.dist = list(list.comp$f4,list.comp$g4),

comp.param = list(list.param$f4, list.param$g4))$mixt.data
Look for the clusters:
list.comp <- list(f1 = NULL, g1 = "exp",

f2 = NULL, g2 = "exp",
f3 = NULL, g3 = "gamma",
f4 = NULL, g4 = "exp")

list.param <- list(f1 = NULL, g1 = list(rate = 1/3.5),
f2 = NULL, g2 = list(rate = 1/5),
f3 = NULL, g3 = list(shape = 12, rate = 2),
f4 = NULL, g4 = list(rate = 1/7))

clusters <- admix_clustering(samples = list(A.sim,B.sim,C.sim,D.sim), n_sim_tab = 8,
comp.dist=list.comp, comp.param=list.param, conf.level = 0.95,

parallel=FALSE, n_cpu=2)
print(clusters)

print.admix_estim Print the results of estimated parameters from K admixture models

Description

Print the estimated weight p of the unknown component in the admixture model under study Recall
that an admixture model follows the cumulative distribution function (CDF) L, where L = p*F +
(1-p)*G, with g a known CDF and p and f unknown quantities.

Usage

S3 method for class 'admix_estim'
print(x, ...)

Arguments

x An object of class ’admix_estim’ (see ?admix_estim).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

print.admix_test 67

Examples

On a simulated example to see whether the true parameters are well estimated.
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7),

f2 = list(mean = 0, sd = 1), g2 = list(mean = -3, sd = 1.1))
Simulate data:
sim1 <- rsimmix(n = 2100, unknownComp_weight = 0.8, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
sim2 <- rsimmix(n= 2000, unknownComp_weight = 0.85, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2, list.param$g2))$mixt.data
Estimate the mixture weights of the admixture models:
list.comp <- list(f1 = NULL, g1 = "norm",

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7),

f2 = NULL, g2 = list(mean = -3, sd = 1.1))
estim <- admix_estim(samples = list(sim1,sim2), sym.f = TRUE, est.method = 'IBM',

comp.dist = list.comp, comp.param = list.param)
print(x = estim)

print.admix_test Print the results of statistical test for equality of unknown component
distributions in admixture models

Description

Print the decision (as well as other useful information) of the statistical test with null hypothesis
corresponding to the equality of unknown component distributions in admixture models. More
precisely, given two (or more) admixture models with cumulative distribution functions (CDF) L1
and L2, where Li = pi*Fi + (1-pi)*Gi i=1,2 and Gi are the known CDFs, the function performs the
test: H0: F1 = F2 versus H1: F1 != F2.

Usage

S3 method for class 'admix_test'
print(x, ...)

Arguments

x An object of class ’admix_test’ (see ?admix_test).

... further arguments passed to or from other methods.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

mailto:xavier.milhaud.research@gmail.com

68 rsimmix

Examples

On a simulated example, with 1 sample (gaussianity test):
list.comp <- list(f1 = "norm", g1 = "norm")
list.param <- list(f1 = list(mean = 0, sd = 1), g1 = list(mean = 2, sd = 0.7))
Simulate data:
sim1 <- rsimmix(n = 300, unknownComp_weight = 0.85, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1, list.param$g1))$mixt.data
Perform the test hypothesis:
list.comp <- list(f1 = NULL, g1 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 2, sd = 0.7))
gaussTest <- admix_test(samples = list(sim1), sym.f = TRUE, test.method = 'Poly', sim_U = NULL,

n_sim_tab = 50, comp.dist = list.comp, comp.param = list.param,
support = "Real", conf.level = 0.95, parallel = FALSE, n_cpu = 2)

print(gaussTest)

rsimmix Simulation of a two-component mixture model

Description

Simulate a two-component mixture model following the probability density function (pdf) l such
that l = p*f + (1-p)*g, with f and g mixture component distributions, and p the mixture weight.

Usage

rsimmix(
n = 1000,
unknownComp_weight = 0.5,
comp.dist = list(f = "norm", g = "norm"),
comp.param = list(f = c(mean = 0, sd = 1), g = c(mean = 2, sd = 1))

)

Arguments

n Number of observations to be drawn.
unknownComp_weight

Weight of the component distribution f (representing the unknown component
in admixture models).

comp.dist A list with two elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the mixture model.
These elements respectively refer to the two components f and g. No unknown
elements permitted. For instance, ’comp.dist’ could be set equal to list(f =
’rnorm’, g = ’norm’).

comp.param A list with two elements corresponding to the parameters of the component dis-
tributions, each element being a list itself. The names used in this list must

rsimmix_mix 69

correspond to the native R argument names for these distributions. These ele-
ments respectively refer to the parameters of f and g distributions of the mixture
model. No unknown elements permitted. For instance, ’comp.param’ could be
set equal to list(f=list(mean=2,sd=0.3), g=list(mean=0,sd=1)).

Value

A list of three components. The first, named ’mixt.data’, is the simulated sample from the specified
mixture distribution. The second, named ’unknown.data’, refers to the data simulated corresponding
to the distribution f. The third, named ’known.data’, corresponds to the observations affiliated to
the known component g.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

sim.X <- rsimmix(n = 2000, unknownComp_weight = 0.7, comp.dist = list(f = 'norm', g = 'norm'),
comp.param = list(f = list(mean = 3, sd = 0.5), g = list(mean = 0, sd = 1)))

class(sim.X)
attributes(sim.X)
plot_mixt_density(samples = list(sim.X$mixt.data), user.bounds = NULL, support = 'continuous')

rsimmix_mix Simulation of a two-component gaussian mixture with one component
following a two-component gaussian mixture

Description

Simulate a two-component gaussian admixture model, where the first component is a gaussian
mixture itself

Usage

rsimmix_mix(n, m, s, p, a)

Arguments

n is the number of observations to be drawn

m the mean (up to the shift a) of the unknown components

s the standard deviation of the unknown components

p the weight of the unknown component (itself a mixture).

a the shift of the mean for the two distributions that are embedded in the unknown
component

mailto:xavier.milhaud.research@gmail.com

70 sim_gaussianProcess

Value

a list containing the data generated from a mixture of mixture distribution, the data where the known
component density has been made uniform(0,1), and the known data (corresponding to the part of
data generated from the known component density).

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

sample1 <- rsimmix_mix(n = 3000, m = 5, s = 0.5, p = 0.3, a = 2)[['mixt.data']]
plot(stats::density(sample1))

sim_gaussianProcess Simulation of a Gaussian process

Description

Simulate the trajectory of a Gaussian process, given a mean vector and a variance-covariance struc-
ture.

Usage

sim_gaussianProcess(
mean_vec,
varCov_mat,
from = 0,
to = 1,
start = 0,
nb.points = 10

)

Arguments

mean_vec Vector (if multimensional) of means for the increments following gaussian dis-
tribution.

varCov_mat Corresponding variance-covariance structure.

from Initial time point at which the process is simulated.

to Last time point at which the process is simulated.

start Useful if the user wants to make the trajectory start from some given value.

nb.points Number of points at which the process is simulated.

mailto:xavier.milhaud.research@gmail.com

stmf_small 71

Value

The trajectory of the Gaussian processes after simulating the multivariate Gaussian distributions
with specified variance-covariance structure.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

list.comp <- list(f1 = "norm", g1 = "norm")
list.param <- list(f1 = list(mean = 12, sd = 0.4),

g1 = list(mean = 16, sd = 0.7))
sample1 <- rsimmix(n = 2000, unknownComp_weight = 0.5, comp.dist = list.comp,

comp.param = list.param)$mixt.data
First get the variance-covariance matrix of the empirical process (Donsker correlation):
cov_mat <- .Call('_admix_estimVarCov_empProcess_Rcpp', PACKAGE = 'admix',

seq(from = min(sample1), to = max(sample1), length.out = 100), sample1)
Plug it into the simulation of the gaussian process:
B1 <- sim_gaussianProcess(mean_vec=rep(0,nrow(cov_mat)), varCov_mat=cov_mat, from=min(sample1),

to = max(sample1), start = 0, nb.points = nrow(cov_mat))
plot(x = B1$dates, y = B1$traj1, type="l", xlim = c(min(sample1),max(sample1)), ylim = c(-1,1))

stmf_small Short-term Mortality Fluctuations (STMF) data series, restricted to 6
countries (Belgium, France, Italy, Netherlands, Spain, Germany).

Description

Weekly death counts provide the most objective and comparable way of assessing the scale of short-
term mortality elevations across countries (32 countries) and time. Extraction date: 09/21/2020.

Usage

stmf_small

Format

A data frame with 88146 rows and 19 variables:

CountryCode Mortality database country code

Year Year

Week Week number

Sex Gender (’m’: male, ’f’: female, ’b’: both)

D0_14 Age range 0-14

D15_64 Age range 15-64

mailto:xavier.milhaud.research@gmail.com

72 two_samples_test

D65_74 Age range 65-74

D75_84 Age range 75-84

D85p Age range 85-+

DTotal Count of deaths for all ages combined

R0_14 Crude death rate for age range 0-14

R15_64 Crude death rate for age range 15-64

R65_74 Crude death rate for age range 65-74

R75_84 Crude death rate for age range 75-84

R85p Crude death rate for age range 85-+

RTotal Crude death rate for all ages combined

Split Indicates if data were split from aggregated age groups (0 if the original data has necessary
detailed age scale). For example, if the original age scale was 0-4, 5-29, 30-65, 65+, then split
will be equal to 1

SplitSex Indicates if the original data are available by sex (0) or data are interpolated (1)

Forecast Equals 1 for all years where forecasted population exposures were used to calculate
weekly death rates

Source

https://www.mortality.org

two_samples_test Two-samples hypothesis test on the unknown component in admixture
models

Description

Test hypothesis on the unknown component of admixture models using different estimation tech-
niques, and different testing strategies.

Usage

two_samples_test(
samples,
known.p = NULL,
comp.dist = NULL,
comp.param = NULL,
method = c("ICV", "Poly"),
n_sim_tab = NULL,
K = 3,
support = c("Real", "Positive", "Integer", "Bounded.continuous"),
est.method = c("BVdk", "PS"),
s = 0.49,
nb.ssEch = 2,

https://www.mortality.org

two_samples_test 73

var.explicit = F,
nb.echBoot = NULL,
bounds.supp = NULL,
parallel = FALSE,
n_cpu = 2

)

Arguments

samples A list of the two observed samples, where each sample follows the mixture
distribution given by l = p*f + (1-p)*g, with f and p unknown and g known.

known.p (default to NULL) The true component weights p1 and p2 if known, only useful
in simulation studies.

comp.dist A list with four elements corresponding to the component distributions (speci-
fied with R native names for these distributions) involved in the two admixture
models. The two first elements refer to the unknown and known components of
the 1st admixture model, and the last two ones to those of the second admix-
ture model. If there are unknown elements, they must be specified as ’NULL’
objects. For instance, ’comp.dist’ could be specified as follows: list(f1=NULL,
g1=’norm’, f2=NULL, g2=’norm’).

comp.param A list with four elements corresponding to the parameters of the component
distributions, each element being a list itself. The names used in this list must
correspond to the native R argument names for these distributions. The two
first elements refer to the parameters of unknown and known components of the
1st admixture model, and the last two ones to those of the second admixture
model. If there are unknown elements, they must be specified as ’NULL’ ob-
jects. For instance, ’comp.param’ could be specified as follows: : list(f1=NULL,
g1=list(mean=0,sd=1), f2=NULL, g2=list(mean=3,sd=1.1)).

method Method used for testing. Choose either ’Poly’ or ’ICV’. ’Poly’ refers to compar-
ison of expansion coefficients in polynomial orthonormal basis, whereas ’ICV’
refers to the Inner Convergence property obtained when using the IBM ap-
proach. More details are provided below in ’Details’.

n_sim_tab (Only with ’ICV’ method) Number of simulated gaussian processes used for the
tabulation of the Inner Convergence distribution in IBM approach.

K (Only for ’Poly’ method) Number of coefficients considered for the polynomial
basis expansion.

support (Only for ’Poly’ method) Support of the densities under consideration, useful to
choose the polynomial orthonormal basis. One of ’Real’, ’Integer’, ’Positive’,
or ’Bounded.continuous’.

est.method (Only for ’Poly’ method) Either ’BVdk’ (Bordes and Valdekerkhove estimation
technique) or ’PS’ (Patra and Sen estimation technique). The latter should not
be used since the estimators plugged into the test statistic are not square-root n
consistent. More details are given in Section ’Details’ below.

s (Only for ’Poly’ method) Rate at which the normalization factor is set in the
penalization rule for model selection (in]0,1/2[).

74 two_samples_test

nb.ssEch (Only with ’Poly’ method) Number of subsamples created from original data to
decorrelate the estimation of the parameters.

var.explicit (Only with ’Poly’ method) Boolean that enables to choose between explicit eval-
uation of the variance of the test statistic or not (FALSE=bootstrap). FIXME: it
seems that bootstrap procedure does not work in the context of admixtures.

nb.echBoot (Only with ’Poly’ method) Number of bootstrap samples if ’var.explicit’ is set
to FALSE.

bounds.supp (Only with ’Poly’ method) default to NULL. Useful if support = ’bounded.continuous’,
a list of minimum and maximum bounds, specified as follows: list(list(min.f1,min.g1,min.f2,min.g2)
, list(max.f1,max.g1,max.f2,max.g2))

parallel Boolean to indicate whether parallel computations are performed (speed-up the
tabulation).

n_cpu Number of cores used when parallelizing.

Details

Here as some details concerning the different methods that can be choosen: i) ’Poly’ relies on two-
sample testing strategy where each unknown component density is decomposed in an orthonormal
polynomial basis, and the estimation of the component weights related to the two two-component
admixture models can be performed either using Patra and Sen estimator (despite the latter is not
square-root n consistent and thus should not be used in such hypothesis tests), or by Bordes and
Vandekerkhove estimation technique (if the unknown component density is symmetric); ii) ’ICV’
refers to Inversion - Best Matching strategy which has no constraints except that we need to handle
two samples.

Value

The decision of the test with further information such as p-value and others, depending on the
method used.

Author(s)

Xavier Milhaud xavier.milhaud.research@gmail.com

Examples

Under the null hypothesis H0 :
Simulate data:
list.comp <- list(f1 = "norm", g1 = "norm",

f2 = "norm", g2 = "norm")
list.param <- list(f1 = list(mean = 3, sd = 0.5), g1 = list(mean = 0, sd = 1),

f2 = list(mean = 3, sd = 0.5), g2 = list(mean = 6, sd = 1.2))
sample1 <- rsimmix(n=250, unknownComp_weight=0.85, comp.dist = list(list.comp$f1,list.comp$g1),

comp.param = list(list.param$f1,list.param$g1))[['mixt.data']]
sample2 <- rsimmix(n=300, unknownComp_weight=0.8, comp.dist = list(list.comp$f2,list.comp$g2),

comp.param = list(list.param$f2,list.param$g2))[['mixt.data']]
plot_mixt_density(samples = list(sample1,sample2), user.bounds=NULL, support='continuous')
Performs the test by the different methods :
list.comp <- list(f1 = NULL, g1 = "norm",

mailto:xavier.milhaud.research@gmail.com

two_samples_test 75

f2 = NULL, g2 = "norm")
list.param <- list(f1 = NULL, g1 = list(mean = 0, sd = 1),

f2 = NULL, g2 = list(mean = 6, sd = 1.2))
Using expansion coefficients in orthonormal polynomial basis:
two_samples_test(samples = list(sample1, sample2), comp.dist=list.comp, comp.param=list.param,

method = 'Poly', K = 3, support = 'Real', est.method = 'BVdk', s = 0.4,
nb.ssEch = 2, var.explicit = TRUE)

Index

∗ datasets
allGalaxies, 10
milkyWay, 50
mortality_sample, 51
stmf_small, 71

admix_clustering, 3
admix_estim, 5
admix_test, 7
allGalaxies, 10

BVdk_contrast, 10
BVdk_contrast_gradient, 12
BVdk_estimParam, 13
BVdk_ML_varCov_estimators, 14
BVdk_varCov_estimators, 16

decontaminated_cdf, 17
decontaminated_density, 19
detect_support_type, 21

estimVarCov_empProcess, 22

gaussianity_test, 24

IBM_2samples_test, 25
IBM_empirical_contrast, 28
IBM_estimProp, 30
IBM_estimVarCov_gaussVect, 32
IBM_gap, 34
IBM_greenLight_criterion, 35
IBM_hessian_contrast, 37
IBM_k_samples_test, 39
IBM_tabul_stochasticInteg, 42
IBM_theoretical_contrast, 44
IBM_theoretical_gap, 45
is_equal_knownComp, 47

kernel_cdf, 48
kernel_density, 49
knownComp_to_uniform, 49

milkyWay, 50
mortality_sample, 51

orthoBasis_coef, 52
orthoBasis_test_H0, 53

PatraSen_cv_mixmodel, 55
PatraSen_density_est, 57
PatraSen_dist_calc, 58
PatraSen_est_mix_model, 59
plot.decontaminated_density, 60
plot_mixt_density, 63
poly_orthonormal_basis, 64
print.admix_cluster, 65
print.admix_estim, 66
print.admix_test, 67

rsimmix, 68
rsimmix_mix, 69

sim_gaussianProcess, 70
stmf_small, 71

two_samples_test, 72

76

	admix_clustering
	admix_estim
	admix_test
	allGalaxies
	BVdk_contrast
	BVdk_contrast_gradient
	BVdk_estimParam
	BVdk_ML_varCov_estimators
	BVdk_varCov_estimators
	decontaminated_cdf
	decontaminated_density
	detect_support_type
	estimVarCov_empProcess
	gaussianity_test
	IBM_2samples_test
	IBM_empirical_contrast
	IBM_estimProp
	IBM_estimVarCov_gaussVect
	IBM_gap
	IBM_greenLight_criterion
	IBM_hessian_contrast
	IBM_k_samples_test
	IBM_tabul_stochasticInteg
	IBM_theoretical_contrast
	IBM_theoretical_gap
	is_equal_knownComp
	kernel_cdf
	kernel_density
	knownComp_to_uniform
	milkyWay
	mortality_sample
	orthoBasis_coef
	orthoBasis_test_H0
	PatraSen_cv_mixmodel
	PatraSen_density_est
	PatraSen_dist_calc
	PatraSen_est_mix_model
	plot.decontaminated_density
	plot_mixt_density
	poly_orthonormal_basis
	print.admix_cluster
	print.admix_estim
	print.admix_test
	rsimmix
	rsimmix_mix
	sim_gaussianProcess
	stmf_small
	two_samples_test
	Index

